
In Search Of
Shotgun Parsers
Katie Underwood
University of Calgary

Michael Locasto
SRI International

May 25, 2016

Overview

Context

Defining The Shotgun Parser

Tainted Path Length In Android Applications

Our Definition In The Wild

Future Work

2

WHAT ARE WE
LOOKING FOR?

Defining The Shotgun Parser

Why Shotgun?

Input use and recognition intermixed throughout!

4

What AreWe Looking For?

• Before we go searching for shotgun parsers,
we need to know what we’re looking for!

• How will we know a shotgun parser when
we see one?

• We frame our definition in the context of
static taint analysis of control flow graphs

5

Hallmarks of the Shotgun Parser

Large Spread Relative To Size
How far does untrusted data propagate
through the code?

Use Before Full Recognition
Is input data fully validated before being
used?

Large Number of Variables Involved
In Each Tainted Path
How much program state is affected by
properties 1 and 2?

6

Hallmarks of the Shotgun Parser

Large Spread Relative To Size
How far does untrusted data propagate
through the code?

Use Before Full Recognition
Is input data fully validated before being
used?

Large Number of Variables Involved
In Each Tainted Path
How much program state is affected by
properties 1 and 2?

6

Hallmarks of the Shotgun Parser

Large Spread Relative To Size
How far does untrusted data propagate
through the code?

Use Before Full Recognition
Is input data fully validated before being
used?
Large Number of Variables Involved
In Each Tainted Path
How much program state is affected by
properties 1 and 2?

6

Property 1: Spread Relative To Size

• Consider an application A, which reads a set
of untrusted inputs N

• Let G be the static control-flow graph which
describes A

• Let Pn be the connected subgraph induced
by the vertices of G tainted by n ∈ N , where
d(Pn) ≤ d(G)

• Let S = {Pi|1 ≤ i ≤ |N |} be the set of all
taint-induced subgraphs on G

7

Property 1: Spread Relative To Size

• Consider an application A, which reads a set
of untrusted inputs N

• Let G be the static control-flow graph which
describes A

• Let Pn be the connected subgraph induced
by the vertices of G tainted by n ∈ N , where
d(Pn) ≤ d(G)

• Let S = {Pi|1 ≤ i ≤ |N |} be the set of all
taint-induced subgraphs on G

7

Property 1: Spread Relative To Size

• Consider an application A, which reads a set
of untrusted inputs N

• Let G be the static control-flow graph which
describes A

• Let Pn be the connected subgraph induced
by the vertices of G tainted by n ∈ N , where
d(Pn) ≤ d(G)

• Let S = {Pi|1 ≤ i ≤ |N |} be the set of all
taint-induced subgraphs on G

7

Property 1: Spread Relative To Size

• Consider an application A, which reads a set
of untrusted inputs N

• Let G be the static control-flow graph which
describes A

• Let Pn be the connected subgraph induced
by the vertices of G tainted by n ∈ N , where
d(Pn) ≤ d(G)

• Let S = {Pi|1 ≤ i ≤ |N |} be the set of all
taint-induced subgraphs on G

7

Property 1: Spread Relative To Size

Shotgun parser indicators:

• d(Pn) comparable to d(G)
→ Indicates input n not handled in principled

manner

• Large |S|
→ Evidence for presence of multiple shotgun

parsers in A

8

Property 1: Spread Relative To Size

Shotgun parser indicators:

• d(Pn) comparable to d(G)
→ Indicates input n not handled in principled

manner
• Large |S|

→ Evidence for presence of multiple shotgun
parsers in A

8

Property 2: Use Before Full
Recognition

• We can’t quantify whether arbitrary input to
an arbitrary piece of code is “fully
recognized”

• We can start to define a set of standards for
handling of specific data types

9

Property 2: Use Before Full
Recognition

For example:
• “For inputs of type

O, you must do 5
reads of 4 bytes
each, then write 20
bytes in a specific
order”

• Identify read/write
memory events
which take place
after input is
received

10

Property 2: Use Before Full
Recognition

For example:
• “For inputs of type

O, you must do 5
reads of 4 bytes
each, then write 20
bytes in a specific
order”

• Identify read/write
memory events
which take place
after input is
received

10

Property 3: Number of Tainted
Input Variables

• Consider again a tainted subgraph Pn

• Let Pn now be a weighted graph, where each
edge E(x, y) corresponds to the number of
variables tainted by n after node x

11

Property 3: Number of Tainted
Input Variables

• Consider again a tainted subgraph Pn

• Let Pn now be a weighted graph, where each
edge E(x, y) corresponds to the number of
variables tainted by n after node x

11

Property 3: Number of Tainted
Input Variables

Shotgun parser indicators:

• Large number of tainted variables
compared to total number of variables
→ Indicates untrusted input affects significant

proportion of program state

• Areas of Pn where edge weight increases
may merit further study
→ Allows us to triage program statements /

methods for further analysis

12

Property 3: Number of Tainted
Input Variables

Shotgun parser indicators:

• Large number of tainted variables
compared to total number of variables
→ Indicates untrusted input affects significant

proportion of program state
• Areas of Pn where edge weight increases
may merit further study
→ Allows us to triage program statements /

methods for further analysis

12

Definition Summary

The “worst case” shotgun parser exhibits all
three properties in abundance!

13

Definition Summary

The “worst case” shotgun parser exhibits all
three properties in abundance!

13

CASE STUDY:
ANDROID

First Steps Towards Automated
Detection

Our Goals

• Establish foundation for a recognizer

• First look at “state of affairs” in Android
applications

• Start examining a different class of errors
through the LangSec lens

15

Our Approach

Jimple CFG for one module of the classic game
“Snake”

• Static taint analysis of
statement-level control flow
graphs

• Compute length of tainted
path corresponding to each
source

• Analysis uses the Jimple
intermediate representation

16

FlowDroid

• Open-source static analysis
framework for Android

• Developed by the Secure
Software Engineering Group at
Paderborn University/ TU
Darmstadt

https://blogs.uni-paderborn.de/sse/tools/flowdroid/

We Add:

• Tracking for all tainted
paths, not only those
terminating in a sink

• Unique identifiers for
each taint source

• Specific API call source for
each taint

• Taint propagation
handler functions to
measure input path
length

17

Our Implementation

Each time a taint is propagated, our custom
handler is invoked:

• Capture incoming flow data object F and
outgoing set of flow data objects Fout

• If F has not been seen before:
• Init F.length = 0
• Store original source context of F.

• For each flow fact f ∈ Fout:
• f.length = F.length + 1
• Store source context information for f

18

Workflow

19

Initial Results

20

Some Thoughts..
• Our tool is:

• The foundation of a full SGP recognizer
• A prioritization method for app analysis

21

OUR DEFINITION
IN THE WILD
Let’s Look At Real Stuff

"ImageTragick'' (CVE-2016-3714)

23

"ImageTragick'' (CVE-2016-3714)

23

"ImageTragick'' (CVE-2016-3714)

23

"ImageTragick'' (CVE-2016-3714)

24

"ImageTragick'' (CVE-2016-3714)

24

"ImageTragick'' (CVE-2016-3714)

24

"ImageTragick'' (CVE-2016-3714)

24

"ImageTragick'' (CVE-2016-3714)

24

"ImageTragick'' (CVE-2016-3714)

Observations:

• (Relatively) long path
• 7 direct function calls between input and
(attempted) validation, but input is also passed
elsewhere

• Raw input is passed between (and used in) 5
different functions before being read into a
native data structure

• Input use and validation is intermixed

• Unsuitable validation mechanism

25

"Heartbleed'' (CVE-2014-0160)

26

"Heartbleed'' (CVE-2014-0160)

Observations:

• Input passed via several function calls
before processing, but not used along the
way

• Low degree of input use / validation
intermixing, however...

• Almost total lack of validation of heartbeat
payload!

27

MongrelWeb Server - HTTP 1.1
Parser

Parsing Done Right!
• Define a finite state machine for HTTP parsing (uses
the Ragel compiler)

• Finite state machine ≡ regular grammar
• Input language is correctly, formally defined
• Input data is correctly, formally recognized

28

In The Context Of Our Definition...

29

In The Context Of Our Definition...

29

In The Context Of Our Definition...

29

In The Context Of Our Definition...

29

FUTURE WORK
Where Do We Go From Here...

Many Roads Lead FromHere

• “Climb the hill of Android”
• Develop automated analysis frameworks
based on our definition for other software
ecosystems

• Develop well-defined input/output patterns
for common types (characterize
“recognition”)

• Rigorously characterize existing
vulnerabilities

• . . .

31

Acknowledgements

We gratefully acknowledge Steven Arzt from the
Secure Software Engineering Group at TU Darmstadt
for his ongoing assistance with technical questions about
FlowDroid via the Soot mailing list

32

Other Thoughts...

• Not all vulnerabilities are shotgun
parsers...and not all shotgun parsers are
necessarily vulnerable

• However:
• If input data is scattered throughout the code -
not just an issue of attack surface, but being
error-prone

• Path length also speaks to how long it takes you
to do the parsing - why aren’t you validating as
soon as data enters your software?

33

Practical Issues

• Platform specific complications
→ FlowDroid dummy main method - necessary

due to Android Lifecycle
• Abstraction level

→ Jimple is an intermediate representation
• Static analysis of real applications is
memory intensive!
→ And we had time constraints...

34

	Context
	Defining The Shotgun Parser
	Tainted Path Length In Android Applications
	Our Definition In The Wild
	Future Work

