
In Search Of Shotgun Parsers In Android
Applications

Katherine Underwood
University of Calgary

Calgary, Canada
Email: kaunder@ucalgary.ca

Michael E. Locasto
SRI International

Infrastructure Security Group
Email: michael.locasto@sri.com

I. Abstract
In any software system, unprincipled handling of input data

presents significant security risks. This is particularly true
in the case of mobile platforms, where the prevalence of
applications developed by amateur developers in combination
with devices that hold a wealth of users’ personal information
can lead to significant security and privacy concerns. Of
particular concern is the so-called shotgun parser pattern, in
which input recognition is intermixed with input processing
throughout the code base. In this work, we take the first steps
toward building a tool for identification of shotgun parsers in
Android applications. By extending the FlowDroid framework
for static taint analysis, we are able to quantify the spread
of untrusted data through 55 applications selected from 15
categories on the Google Play store. Our analysis reveals that
on average, most untrusted input propagates a relatively short
distance within the application code. However, we also find
several specific instances of very long data propagations. In
addition to providing a first look at the “state of affairs” in a
variety of Android applications, our work in this paper lays
the groundwork for more precise shotgun parser signature
recognition.

II. Introduction
The Android platform has the largest market share of mobile

device operating systems worldwide [1]. However, the nature
of the Android development ecosystem means that many
popular applications are created by amateur developers, who
may not always follow security best practices. Additionally,
the widespread use of third party libraries means that a single
bug in a single library can have security implications in a huge
number of popular applications, as was seen with the recent
“Stagefright” vulnerability[2].

In particular, significant security vulnerabilities can be intro-
duced if input data is not handled in a principled manner. This
project addresses the problem of unprincipled input handling
from a language-theoretic security, or LangSec, approach.
LangSec is a relatively new sub-field of security research
focused on treating program inputs as formal languages to be
formally recognized. In the overview by Bratus et al. [3], four
LangSec “anti-patterns” are identified, which exemplify the
poor practices that LangSec seeks to prevent. These include
ad-hoc notions of input validity, parser differentials, mixing

of input recognition and processing, and ungoverned devel-
opment/language specification drift. For reasons of computa-
tional tractability, this work focuses on identifying instances of
mixed input recognition and processing—so-called “shotgun
parsers”—in Android application code. Informally, the term
shotgun parser refers to code that mixes input data recognition
and input data processing [3] (this pattern is so named because
raw input data ends up scattered throughout the code base,
as if shot like pellets out of a shotgun). We present three
hallmarks of the shotgun parser pattern: input spread relative to
application size, number of variables involved in each tainted
path, and use before full recognition. In the following sections
we formalize these definitions, and carry out the first steps
to quantify the prevalence of this pattern in popular Android
apps.

Our analysis makes use of FlowDroid [4], which is an
existing open-source library for static taint analysis of Android
applications. By using FlowDroid to extract information about
tainted paths from application control flow graphs, we quantify
“how far” input data propagates within an application. This
data serves as a jumping-off point for assessment of shotgun
parser prevalence in any Android application. We also draw
conclusions about input data handling patterns that exist for
different types of input sources (e.g. input from screen vs.
input from network card).

III. Contributions

• Path length data collected thus far can be used to classify
“worst offenders” in terms of individual apps, app cate-
gories and source types. These data points can then be
used as a starting point for future analysis.

• Our modifications to the FlowDroid framework can be
used as a foundation for future, more in-depth analysis
focused on capturing specific operations executed along
long tainted paths.

• This work contributes to the relatively new LangSec
approach to security analysis, and aims to contribute to
improving security best practices for Android developers
by approaching security analysis from a LangSec-based
angle.

IV. Background and RelatedWork

Since Google released the first version of Android in 2007,
there has been significant research into the security properties
of both individual Android apps and the Android operating
system itself. This work ranges in scope from surveys of
Android user attitudes and behaviours, to examination of
reviews posted on the Google Play store, to static and dynamic
explorations of the code base. Some of this prior work is
briefly discussed here.

A. Various Tools For Security Analysis

The continuing interest in Android security research has
given rise to the development of a number of tools for
assessing various properties of Android applications. Tools
such as Stowaway [5] and PSCOUT [6] perform static analysis
to empirically determine the mapping between API calls and
required permissions. Android applications run on a Dalvik
virtual machine, and as such the low-level code found in an
Android .apk file is Dalvik byte code. Dexpler [7] is a tool for
converting low-level Dalvik bytecode into Jimple, which is an
intermediate-level representation for Java. Various tools exist
for analyzing the execution of Android apps, both statically
and dynamically. These include SymDroid, a symbolic exe-
cution framework for Dalvik bytecode [8]; DynoDroid, which
generates app inputs for event-driven testing [9]; VetDroid,
which uses dynamic analysis to capture permission use be-
haviour [10]; and TaintDroid, which performs real-time taint
tracking as an app is running [11]. The 2013 work by Egele et
al. in An Empirical Study of Cryptographic Misuse in Android
Applications statically analyzes 11,748 apps and concludes
that 88% of these use cryptographic APIs incorrectly, that is,
in a manner which violates IND-CPA1 security. This analysis
is conducted using the author’s Cryptolint tool, which operates
on Dalvik bytecode by computing the super control flow graph
of each app, and then using static program slicing to trace
backwards from each crypto API call.

Of significant relevance to this project is the Soot framework
[12], which was developed by the Sable Research Group at
McGill University for the analysis and instrumentation of Java
code. More specifically, this project relies on an extension
to Soot called FlowDroid [4], [13], [14], which facilitates
analysis of Android applications specifically. The operation of
FlowDroid is discussed in detail in the Methodology section.
FlowDroid makes use of the output of SuSi, a tool for
automatically classifying sources and sinks present in the
Android operating system [15].

B. Formal Language and Control Flow Graph-Based Work

The focus of this project lies in the less-studied area
of formal language-based security. Some work has certainly
been conducted in similar directions, however none from a
specifically LangSec based angle. In Language-based Security
on Android, the author presents a formal language to describe
Android applications abstractly [16]. This work differs from

1Indistinguishability under chosen plaintext attack

ours in that we will focus on how application input is
propagated, rather than formal specification of the apps them-
selves. The KTH Royal Institute of Technology in Stockholm,
Sweden, have developed a tool called TreeDroid [17], which
makes use of the TaintDroid framework and uses a lambda
calculus-based approach to characterize and enforce safe data
processing policies. This work is similar to our project in that
it seeks to quantify “good behaviour” for input processing.
However, the focus of our project is on statically assessing
the prevalence and severity of one specific anti-pattern (the
shotgun parser) in the existing set of popular applications. By
contrast, the TreeDroid paper focuses on real-time monitoring
and policy enforcement. An interesting extension to our work
could involve enforcing a “safer” input processing policy in
cases where a shotgun parser has been identified. Such work
would also be a natural extension of the TreeDroid approach
and in this case the KTH group’s work in this area would be
highly relevant.

Our work is also heavily based on analysis and traversal
of program control-flow graphs. In Generalized Vulnerability
Extrapolation Using Abstract Syntax Trees [18], Yamaguchi
et al. represent application code as abstract syntax trees, and
identify vulnerabilities based on structural patterns within
these trees. This work is extended in the 2014 paper Modelling
and Discovering Vulnerabilities with Code Property Graphs
[19], which incorporates analysis of control flow graphs and
program dependence graphs. While there are some general
similarities to our work, the Yamaguchi papers focus on
vulnerabilities in the Linux kernel [19], and in open source
projects including LibTIFF, FFmpeg, Pidgin and Asterisk [18],
whereas we focus specifically on Android applications. In
addition, their approach involves developing templates for
common vulnerabilities which can be compared against a
code base. By contrast, our approach is to statically analyze
the control flow graph of each app in our test set to gather
empirical data about shotgun parser severity and prevalence.

C. The Shotgun Parser Anti-Pattern

In Shotgun parsers in the cross-hairs [20] and From ’Shot-
gun Parsers’ to Better Software Stacks [21], Patterson et.al de-
scribe the “shotgun parser” design anti-pattern, characterized
by use of input data before full recognition. In these talks,
the presenters highlight various examples of how a failure to
fully recognize input data leads to exploitable vulnerabilities.
In the sections that follow, we expand upon this concept and
propose a graph-based framework for identification of the
shotgun parser anti-pattern.

V. Methodology

A. Static Taint Analysis

We frame our approach in the context of static taint analysis.
Informally, taint analysis involves defining data from an un-
trusted source to be “tainted”. When tainted state is involved in
a program statement, the taint may be propagated on to other
variables in that statement. For example, in a case where a
variable x is tainted, execution of the statement y = x+a would

result in y becoming tainted as well. Formally, at each program
statement s the set of incoming tainted state T is transformed
to a set of outgoing tainted state T ′ according to a predefined
set of taint propagation rules or transfer functions.

To describe the taint transfer functions used in our analysis,
we follow the description in [13] and references therein. The
transfer functions used in our analysis are as follows:
• Normal flow function - applies to straight line control

flow from one statement to another. Since new taints can
only be generated as the result of an API call to a source
method, for normal flows t ∈ T ′ =⇒ t ∈ T . The converse
is not necessarily true however, since the statement over
which the normal flow function is applied may not pass
on any taint from the incoming set T .

• Call flow function - applies to statements in which one
method is called from another. In this case, any tainted
state from the caller method which is passed as an
argument is defined to be tainted in the callee method
as well.

• Return flow function - applies to statements in which one
method is returned to from another (following a call).
Similar to the call flow function, here any tainted state in
the callee method which is returned to the caller method
is defined to be tainted in the caller method upon return.

• Call-to-return flow function - captures any flows between
a call and return statement within the same method. This
is necessary to preserve state which was tainted before a
method call, but which may not be passed as part of the
method call.

In general, the set of outgoing taints T ′ is given by T ′ =T ∪
Tnew \Tkilled, where Tnew is the set of all new taints generated
as a result of the statement, and Tkilled is the set of all taints
killed as a result of the statement (i.e. taints which do not
propagate).

The FlowDroid developers also define some more subtle
taint propagation rules for handling of special cases such as
native calls, however a discussion of this logic is not required
in order to describe the basis of our analysis[13].

B. Defining the Shotgun Parser

Since the purpose of this work is to identify the prevalence
of shotgun parsers in Android applications, it is necessary to
define what constitutes a shotgun parser. Informally, code that
contains a shotgun parser mixes input recognition and process-
ing [3], and does so throughout the code base. Conversely,
code that definitely does not constitute a shotgun parser
would immediately validate all input data and, upon validation,
proceed by populating strongly typed data structures with the
necessary input bytes. With these considerations in mind, we
propose three characteristics of a shotgun parser. Each of these
characteristics is a necessary (but not sufficient) condition for
the presence of a shotgun parser.

1) Spread Relative to Size
Once data is read into an application from an external
source, how far does this input data propagate though

the code? Consider a control flow graph G for an
application which reads in some piece of input data
x. As per the principles of taint analysis, all vertices
of the control flow graph in which x is involved are
now considered to be tainted. We define the tainted
subgraph Px as the connected subgraph induced by
the vertices tainted by x. We then quantify the spread
relative to size by comparing the diameter of Px to the
diameter of G. If the diameter of Px is comparable to
that of G, this is a strong indicator for the presence of
a shotgun parser. The greater the number of relatively
large tainted subgraphs present in control flow graph G,
the stronger the evidence for the presence of multiple
shotgun parsers.

2) Large Relative Number of Variables Involved In Each
Tainted Path
Multiple distinct variables involved in a single tainted
path is another indicator for a shotgun parser. In particu-
lar, if the number of variables involved in a given tainted
path is large compared to the total number of distinct
variables in the code, this is a significant indicator for
the presence of a shotgun parser.

3) Use Before Full Recognition
As discussed above, in the best-practice scenario, input
data is fully recognized and validated before being used
to populate native data structures for further operations.
That is, the “recognition and validation” phase should
be described by a well-defined formal grammar, and
the “use” phase should involve well-defined access to
a strongly typed data structure. In the worst-practice
scenario, the validation of input data x is intermixed
with the use of x (or, no validation occurs at all). Such
ad hoc input processing is evidence that the development
process of this code was not governed by a strict
notion of a formal input language, and constitutes further
evidence for the presence of a shotgun parser.

To summarize, the “worst case” shotgun parser would
be code which exhibits all three of these characteristics in
abundance. That is, many execution paths are tainted, each
tainted path involves a relatively large number of variables,
the relative length of each tainted path is long, and tainted
variables are read from and written to in an arbitrary order.

C. Path Length Analysis

The goal of this project is to lay the foundations for
development of a tool which can identify shotgun parsers
in arbitrary Android applications. This is an extensive task,
and so in this initial stage we focus on identification of the
first characteristic only (spread relative to size). We quantify
spread relative to size by using a static taint analysis approach
to compute the length of the tainted path corresponding to
each input source. This is described in detail in the following
sections.

D. FlowDroid

1) FlowDroid Overview: Our analysis extends FlowDroid
[4], a third-party open-source tool for analyzing Android
applications, developed by the Secure Software Engineering
group at the European Center for Security and Privacy by
Design. FlowDroid itself is an extension to the Soot framework
[12] for static analysis of general Java applications, specifically
tailored to the analysis of Android applications.

The nature of the Android lifecycle methods means that the
various operating system callbacks could be invoked at any
time and in any order, as illustrated in Figure 1. Thus there is
no single clearly defined code entry point, as there would be
in a “traditional” piece of software.

To enable static analysis in this environment, FlowDroid
operates by first constructing a dummy main method, which
models the Android application life cycle by invoking all
possible life cycle methods in all possible orders [4]. Next,
FlowDroid generates an inter-procedural control flow graph,
and uses this to track taints from a set of pre-defined sources
(e.g. a network device API) to a set of pre-defined sinks (e.g.
a memory location). All analysis is static. Identified flows
between sources and sinks are then returned as output.

Each time FlowDroid encounters a taint (i.e. data which
originates from a defined source) to be propagated, information
about the tainted path is stored in an object along with relevant
metadata as a flow fact object. Taint propagation entails ap-
plying one of the four predefined propagation rules described
in the Static Taint Analysis section to the current flow fact
and current statement. The output of each propagation is a set
of zero or more additional flow facts. Consider a flow fact F
which is propagated over a statement s. Then for the output
set of flow facts Fout, we have four cases:
• s does not result in any taint propagation: Fout = ∅
• s propagates the original taint but does not create any

new taint: Fout = F
• s generates one or more new taints but does not propagate

the original taint: Fout , ∅, F < Fout
• s propagates the original taint and generates one or more

new taints: Fout , ∅, F ∈ Fout

2) Source Configuration: FlowDroid relies on an input list
of predefined source and sink methods in order to perform taint
tracking. Following the approach of the authors in [4], we used
the output of the SuSi tool [15] to define our sources/sinks
for input to FlowDroid. SuSi is a tool which uses a machine
learning approach to identify sources and sinks in the Android
API. We thus follow reference [15] and define a Source as any
call into a resource method which returns non-constant values
into the application code. A resource method is defined as
any method which reads data from or writes data to a shared
resource [15]. Note that these definitions mean that we treat
data as tainted if it originates from anywhere outside of the
application code, even if the origin point is elsewhere on the
same physical device and not from an external origin point
such as a network socket. This is in fact desirable, as malicious
activity on a mobile device may originate from a compromised

Fig. 1: The Android activity lifecycle. The ovals represent
Android system calls, and the rectangles represent callback
functions defined within an app. (Image taken from Android
Developer Website[22].)

system component or other application, as in a permission
re-delegation style attack[23]. Therefore data should not be
treated as “safe” simply because it originates from elsewhere
on the same physical device.

3) Control Flow Graph Representation: In a control flow
graph, each node represents a single program statement, and
each edge represents an allowed transition between statements
(for example, an edge could represent direct transition to
the next sequential instruction, or a branch such as a con-
ditional jump). FlowDroid operates on an intermediate Java
representation called Jimple [13], which is a typed three-
address representation that sits between high-level Java and
Android’s native Dalvik virtual machine instructions in terms
of complexity. An example of a Jimple-based control flow
graph is shown in Figure 2.

Thus in the FlowDroid control flow graph, each node
corresponds to a single Jimple statement, and each edge is
one of four types [13]:

• Normal Edge - represents straight-line control flow from
one statement to the next within the same method.

• Call Edge - represents a call from a node in one method

$i0 = 0

$r0 := @this

goto label3

label2:
$i = 1

goto label1

$r0.setTile(3, $i0, $i1)

$i1 = $i1 -1

$i1 = mYTileCount

$r0.setTile(3, $i0,0)

If $i0 >= $i1 goto label2

label1:
$i = mXTileCount

$i1 = $i1 + 1

$r0.setTile(3,0,$i1)

$i0 = $i0 - 1

label3:
$i0 = mYTileCount

label4:
return

if $i >= $i0 goto label4

Fig. 2: An example of a portion of a Jimple-based inter-
procedural control flow graph for the classic mobile phone
game “Snake”. For simplicity, only the subgraph correspond-
ing to the updateWalls() method is shown here. Call sites
(which correspond to edges into other methods) are shown in
bold.

to the start node of a different method.
• Return Edge - represents a return from the exit node of

a method back to the next node in the calling method.
• Call-to-Return Edge - represents an edge connecting a

call node and a return node. Clearly program execution
does not proceed directly from the call node to the return
node, however it is necessary to include this edge so that
tainted state which is not passed to the call method is
preserved after the return.

Note that each of these types corresponds to one of the
transfer function types defined in Section V-A above.

4) Modifications for Path Length Analysis: FlowDroid
keeps track of all tainted access paths, and only outputs
those which terminate at a pre-defined sink [13]. In our
analysis, we wish to capture the lengths of each tainted
access path, in addition to the path origin. Additionally,
we wish to examine the paths for all tainted variables, re-
gardless of whether their propagation terminates in a sink.
FlowDroid provides the taintPropagationHandler inter-
face, which defines methods for a handler function which is
invoked each time a taint is propagated [24]. We define the
classes Soot.jimple.infoflow.sgp.SGPHandlerLite and
Soot.jimple.infoflow.sgp.SGPHandlerVerbose which
implement taintPropagationHandler. (These handlers dif-
fer only in the level of detail provided in the out-
put; SGPHandlerLite provides path length output only,
SGPHandlerVerbose gives path length along with flow fact
details and taint source context for each propagation step). By
setting these functions as callback methods at the outset of
the data flow analysis, we are able to intercept incoming flow

fact F, current statement s and outgoing set of flow facts Fout
each time a taint is propagated. To give additional context to
the paths measured, we also store the so-called source context
(the API call which originated the given taint). In addition,
we modify FlowDroid’s native definition of the data flow fact
class to include a unique identifier. Then at each invocation of
our handler function, the following logic is executed:

• If F has not been seen before, initialize F.length = 0.
Store original source of Fin.

• For each flow fact f ∈ Fout:

– f .length = F.length+ 1
– Store source context information for f .

Note that source context is only stored explicitly in the
first flow fact generated after input from a source. Therefore
in order to ensure that all captured paths retain context
information, we recursively examine f ’s predecessor flow facts
where necessary to recover original source context.

As discussed above, at this point we are characterizing
spread relative to size only. We do not capture any information
about what operations take place along a long tainted path. Re-
call that in a best-practice scenario, receipt of untrusted input
should be immediately followed by validation and population
of a strongly typed native data structure. Further computation
would then take place using the native data structure only,
never the raw input. The worst-practice scenario would involve
use of raw input throughout the code with limited or no
validation. Due to the manner in which taint propagation is
defined in FlowDroid, our analysis considers an object X to be
tainted if any subfield of X is tainted [13]. Thus, our analysis
does not capture the good-practice case in which validated
data is read into a native object - a long path of length l
which starts with validation and native structure population is
treated the same as a path of length l consisting exclusively of
propagations of raw, unvalidated input. Automated analysis of
what operations are actually being performed at each stage in
the control flow graph is beyond the scope of this first stage
analysis. However, our path length output serves as a well-
defined starting point for this future analysis.

E. Path Length Normalization

In order to effectively compare tainted path lengths between
applications, it is necessary to normalize the path lengths by
some factor representative of the size and complexity of the
control flow graph being analyzed. For example: a tainted path
of length 90 in an app whose control flow graph has a total
diameter of 100 should be considered to be more significant
than a tainted path of length 90 in an app whose control flow
graph has a diameter of 1000, as the former represents a taint
which propagates much farther into the application.

The most correct strategy for normalization would be to cal-
culate the distribution of path lengths, and use this to establish
a normalization factor based on path length mean and standard
deviation. Due to time constraints, for the purpose of this
project we are taking a more naïve approach and normalizing

by an upper-bound on graph diameter2. Due to the nature of
the Android life cycle and the fact that lifecycle methods can
be invoked at any time and in any order, FlowDroid does not
store a single data structure containing all nodes and edges
[25]. The taint propagation engine’s exploration of possible
paths is more subtle than a simple iteration over a single graph.
However, FlowDroid does provide well defined methods for
extracting the subgraphs corresponding to individual methods,
as well as an enumeration of all methods that are accessible.
Thus we define our diameter upper bound D as the sum of
diameters of each method subgraph, as follows:

diameter ≤ D =
∑

m∈M

dm

where M is the set of all accessible methods and dm is the
diameter of method m.

This approximation is a valid upper bound (albeit not a
tight one), since the “worst case” longest path through the app
would occur if every method were accessible from every other
method, and within each method the control flow with the
longest path was taken. The length of such a path would then
be the sum of diameters of each method. While this calculation
is not a perfect solution, it provides adequate accuracy for our
first “rough cut” analysis. The diameter of each subgraph is
calculated using the Floyd-Warshall shortest path algorithm.

1) Application Data Set: In order to study as large a cross-
section of the app market as possible, we selected 55 applica-
tions from 15 of the major categories available on the Google
Play store. It must be noted that due to regional restrictions,
we were not able to download some apps out of particular
categories (banking and media apps in particular often require
the user’s device to be registered in a specific country). Flow-
Droid’s analysis is very computationally expensive, requiring
up to 100 GB of RAM to analyze applications of significant
complexity. Lacking the hardware and time for analysis on
this scale, it was necessary for us to restrict our analysis to
applications under a certain size. Preliminary testing indicated
that using a machine with 32 GB of RAM, it was (usually)
possible to analyze an application with total .apk size less
than 10 MB in approximately 20 min. However, since .apk
size does not necessarily increase linearly with control flow
graph complexity, it was still necessary to discard some test
applications on a case-by-case basis when out of memory
errors were encountered. For reasons of runtime efficiency,
we restricted the final test dataset to apps under 2 MB in size.
Unfortunately, this size limitation meant that we were not able
to sample apps from all categories - see the Limitations section
for details. The number of apps sampled from each category
is detailed in Table I. Although we do not have a large enough
sample set to draw any significant conclusions about behaviour
of apps from particular categories, we include the details of the
categories used to underscore the fact that our sample covers
a wide range of application types.

2Where diameter is defined as the longest shortest-path between any 2
nodes in the graph

Category Number of Apps Analyzed

Books & Reference 4

Comics 7

Entertainment 1

Finance 5

Library & Demo 5

Live Wallpaper 5

Medical 2

Music 2

Personalization 1

Photo 1

Social 6

Tools 3

Transportation 3

Travel 4

Weather 4

TABLE I: Sample Applications from 15 Categories

F. A Note on Scope

It should be noted that while this work focuses on the
analysis of Android applications, our static control flow graph-
based methodology is not Android-specific. Our graph-based
definition of the three characteristics of a shotgun parser
can be applied to any code that uses data from an external
source. We choose to focus on the Android platform first for
several reasons. The open availability of Android application
binaries allows us to examine byte code directly. Furthermore,
choosing Android enables us to leverage existing tools (namely
FlowDroid) for control flow graph construction. Additionally,
as discussed in the Introduction, the popularity of the Android
operating system in combination with the prevalence of third
party libraries in Android app development mean that a single
bug can impact huge numbers of users. As discussed by
Patterson et al. in [20] and [21], the shotgun parser anti-pattern
can cause significant security vulnerabilities, and as such there
is value in exploring the extent to which this anti-pattern is
present in a very widely-used mobile platform. A logical next
step would be the application of our analysis technique to

other software ecosystems. However, analysis of code other
than Android applications is beyond the scope of this paper.

VI. Application Analysis Results

We ran our analysis tool on 55 applications selected from
15 of Google Play’s 25 categories. For each application, the
length of each tainted path was recorded and normalized as
described above. The results of our analysis are presented in
the following sections.

A. Path Length Analysis For Individual Applications

We first discuss tainted path lengths on a per-app basis.
Since we are interested in how many tainted paths of each
length occur, we generate a histogram for each application.
In each plot, we visualize the frequency of each observed
(normalized)3 path length for the given application. Binning
for each histogram was calculated using the typical rule-of-
thumb for binning: number of bins =

√
number of samples.

(Note that the axes for histograms of different applications
are not necessarily the same!)

The absolute number of tainted paths varies widely by appli-
cation, which is as expected given the diversity in application
size and complexity. Maximum path length varies by app as
well, although it is worth noting that the majority of paths
cover less than 10% of their respective graph diameters. This
will be discussed in detail in a subsequent section.

Despite these variations, it is interesting to note that for most
apps analyzed, the overall shape of the path length distribution
is similar. Figures 3 and 4 are representative of the typical
distribution shape. In general, tainted path lengths tend to
follow an inverse power log-like shape, with the majority of
tainted paths being very short. Such a distribution is promising
from the standpoint of avoiding the large-spread-relative-to-
size anti-pattern, as this distribution indicates that the majority
of tainted input propagates a very short distance.

We are also interested in deviations from the typical dis-
tribution shape. Such deviations can serve as a starting point
for analysis of the second and third hallmarks of the shotgun
parser, namely large numbers of tainted variables and use
before full recognition. We observed several such cases in our
sample set. For example, rather than the inverse power log-like
shape, the "Garfield Daily” comics app (shown in Figure 5)
has an almost trimodal shape. Perhaps even more interesting
is the “Canadian Tire Money Tracker” app (Figure 6, which
has a large cluster of very short tainted paths with lengths
between 0.1 and 0.2.

Perhaps the best candidate for further analysis is the “Open
Comic Reader” application. The large majority of this app’s
tainted paths are less than 20% of the total diameter, and so
upon first inspection it might appear that this app follows the
typical inverse power log shape, as shown in Figure 7.

Examination of the full data range tells another story. As
can be seen in Figure 8, there are several instances of very long
paths, including one group of paths whose lengths exceed 80%

3Since we normalize by (upper bound of) diameter, this means that each
length is a value between 0 and 1.

Fig. 3: Histogram of tainted path length occurrences for the
Neon Blue Theme wallpaper app, displaying common inverse
power log-like distribution

Fig. 4: Histogram of tainted path length occurrences for the
Great West Life Insurance GroupNet app, also displaying
common inverse power log-like distribution

of the graph diameter. Furthermore, these are not single paths,
but clusters of paths which occur with enough frequency to
be observable even in a sample set with path length counts
of up to 90000. These are certainly instances of large spread
relative to size.

What operations are taking place along these very long
paths? What pieces of state are involved? These questions will
be the subject of our future work to construct an identifier for
the second and third properties of the shotgun parser. The
Open Comic Reader case demonstrates how our current work
serves as a foundation for future analysis - we have identified
a “likely candidate”, and can now focus further analysis on a
small subset of paths in a particular application.

Fig. 5: Histogram of tainted path length occurrences for the
Garfield Daily comic reader. This shape of the distribution for
this application deviates from the typical shape, which makes
this app of interest for further study.

Fig. 6: Histogram of tainted path length occurrences for
the Canadian Tire Money Tracker app. This shape of the
distribution for this application deviates from the typical shape,
which makes this app of interest for further study, particularly
since there is a large cluster of tainted paths which span 15-
20% of the total control flow graph diameter.

Fig. 7: Histogram of tainted path length occurrences for the
Open Comic Reader app. For path lengths between 0 and 0.2,
this application appears to display the typical inverse power
log shape seen in other applications.

Fig. 8: Histogram of tainted path length occurrences for the
Open Comic Reader app, shown at full scale. The circled paths
span a significant proportion of the control flow graph and thus
are of interest for further study.

The Library & Demo category deserves a special mention.
Referring to the full set of histograms (available on GitHub
- see Appendix A), it can be seen that the tainted paths in
applications from this category tend to be very few in number.
We theorize that this variation results from the nature of the
Library& Demo classification - this category appears to be
reserved for small apps which either demo a specific feature, or
which work as an extension to another, larger application. For
example, the “Aviary Effects: Classic” app (shown in Figure
13 in Appendix A) is a plugin for the Aviary Photo Editor.

Thus, since most functionality is handled by the primary app,
these small plugin apps have simple control flow graphs and
short path lengths. However, analysis of a much larger sample
set would be required to draw any general conclusions about
the general behaviour of apps in Library & Demo.

B. Source Type Analysis

Each tainted path originates at a source, and so it is of
interest to examine the relationship of source type to tainted
path length. To this end, we combined the path length data for
all 56 applications in our data set and calculated the minimum,
maximum and average path length for each of the 1080 unique
source types observed.

Figure 9 displays the minimum, maximum and average
path lengths for the 20 sources with the longest average
tainted path length. (We visualize only the top 20 sources
for the sake of clarity). The taint source class and method
call are detailed on the left hand side of the plot. It can
be seen that the source corresponding to the longest average
path is android.content.Context.getContext(), called
from within the com.aviary.android.feather.plugins.
filters.library.BaseEffectsContentProvier library.
Indeed, examining the histogram for the Aviary Effects: Clas-
sic app (Figure 13) reveals that the small number of paths
are relatively evenly distributed between 0 and 50% of the
graph diameter, resulting in a high average path length. It
is also interesting to note that many of the sources have a
minimum path length of zero, which indicates that a call to
the source was detected but that data from this source was
never propagated.

In Figure 10 we display the minimum, maximum and
average path lengths for the 20 sources with the longest
maximum tainted path length. This is an interesting figure in
the context of building a foundation for further analysis, as
it highlights those sources with a high probability of being
associated with shotgun parser indicators. We see here that
the worst offender is the method getParcelable(String
string), which returns the Parcel value associated with the
argument string [26]. An Android Parcel is an object designed
for high-performance inter-process communication (IPC) [27].
Thus, the most common type of input data being propagated
in our longest tainted paths is an object designed to transmit
messages from one process to another. This presents a definite
security concern, since malicious applications can co-exist
along with benign applications on the same device, and as such
any inter-process communication should be handled carefully.
In particular, this situation is concerning in the context of the
“confused-deputy” style attack, wherein a malicious process
delegates a task for which it does not have privilege to a more
privileged, naïve process [23]. This case is another excellent
proof-of-concept for our tool, as we have identified a possible
source of concern and can now focus further analysis on how
data from this untrusted source is handled - i.e. whether the
input is fully recognized before being used.

C. Average Tainted Path Length for All Applications

Finally, we examine the average tainted path length for each
application analyzed. This is shown in Figure 11. We note
that all average path lengths are less than 30% of their graph
diameter, and the majority of tainted paths are less than 5%
of their graph diameter. This appears to be a promising result
indicating a relatively low overall prevalence of the spread
relative to size anti-pattern.

VII. FutureWork and Challenges

A. Limitations

Several limitations of our approach must be noted.
• Data Set Size and Diversity

Due to time constraints and hardware limitations, our
sample set was relatively small and restricted to very
small apps. In particular, we were not able to assess any
apps from the extensive Games category, as popular game
applications were too large to be analyzed by our tool in
a reasonable timeframe. In order to fully characterize the
spread relative to size characteristic, it would be necessary
to have a much larger sample including applications of
various sizes and levels of complexity. Future work will
include work to improve the memory requirements of our
analysis tool.

• Version Specific Android Source and Sink List
As discussed in the Methodology section, we use the
output of the SuSi tool to specify sources and sinks
for FlowDroid. SuSi’s output depends on the specific
version of the Android API being analyzed, and it has
been observed that there are differences between API
versions [15]. Therefore to be most complete, it would
be necessary to run SuSi on each version of the Android
API we wish to support, and then use the appropriate
source/sink list for the API version each app was de-
veloped with (version information is readily available in
each application manifest file so this aspect would not be
a challenge to implement).

B. Verification

In this work we have proposed a theoretical definition for
a shotgun parser and have conducted an initial investigation
of the spread relative to size property. An important next step
will be to more thoroughly study the practical manifestations
of this property in source code. The following approaches are
suggested:
• Study of actual shotgun parser-based vulnerabilities

An ideal test of our tool would be to assess its per-
formance on applications which contain known vulner-
abilities stemming from unprincipled input handling. In
particular, it would be valuable to confirm the correlation
between very long input paths and shotgun parsing. This
analysis will necessitate some extensions to our tool.
Since FlowDroid operates by creating a dummy main
method which invokes all possible life cycle methods in
all possible orders, it will be necessary to identify which

Fig. 9: Data for the 20 source types with the longest average tainted path length.

Fig. 10: Data for the 20 sources with the longest maximum tainted path length.

Fig. 11: Average (normalized) tainted path length for each application in the data set.

specific ordering corresponds to each long tainted path, so
that the corresponding execution path through the source
code can be precisely traced. However, selection of a
test set of applications for this analysis may prove chal-
lenging. It will be necessary to examine the application
source code to confirm that the known vulnerability did
in fact result from improper handling of input data, and
while Android application binaries are readily available,
application source code is not always so.

• Input fuzzing
It will also be valuable to identify the nature of the input
data involved in very long propagations. This can be
achieved by fuzzing the application and tracking which
combinations of input cause the very long access paths
to be exercised.

C. Second and Third Shotgun Parser Properties

As described in the Methodology section, this work focused
on identification of the first of three proposed properties of
a shotgun parser. Thus, the natural extension to this work is
implementation of automated detection of the second and third
properties, namely number of input variables involved in each
tainted path and use before full recognition. Extending our tool
to capture the number of tainted variables involved in a given
path will enable us to assign edge weights to each path, with
the weight corresponding to the number of tainted variables
involved. This step will allow us to further narrow down areas
of concern for further analysis.

The key step will be to address the use before full recogni-
tion property. That is, we must characterize the nature of the
operations taking place along each long tainted path and assess
whether or not these operations constitute “full recognition”
of the input data. In order to determine whether input data
is being fully recognized before use, we must answer the
following questions:
• Does there exist code which constitutes a parser?
• Is this code used to completely parse the input data before

that data is used in any way?
• Is the nature of the parser appropriate for the language

complexity of the input data? (For example, it is inappro-
priate to attempt to validate a context-free input language
using a regular grammar [20]).

Automated verification of these conditions is a problem of
significant complexity and will constitute the majority of the
future work on this project.

We can gain some insight into the use before full recog-
nition problem by examining the sequence of memory read
and write operations that occur for given pieces of program
state involved in long propagations. As a first step toward
addressing this property, we propose to extend our existing
framework to capture the Jimple statement associated with
each taint propagation, and thus reconstruct the sequence
of Jimple statements corresponding to each identified path
through the control flow graph. By examining these sequences,
we can extract the read and write events associated with each
component variable over the course of a taint propagation.

By characterizing sequences of read and write operations
in this manner, we can better understand the nature of the
operations occurring along identified long paths and assess
whether input data is handled in a principled manner. Fur-
thermore, through empirical examination of such read/write
sequences extracted from known shotgun parsers, we can begin
to construct a heuristic describing “good” and “bad” behaviour
in terms of input parsing. We can also begin to set a policy for
each Android data type (an example of such a rule might be
“each field of object type x must be written to before any field
of object type x is read”). Of course, such rules would only
encompass behaviours related to loading and storing memory
operations - we do not propose to offer a complete set of rules
for all possible operations on all possible objects.

It must be noted that there are still several limitations
inherent to this approach. Jimple is an intermediate repre-
sentation, and while it does accurately represent the intent
of the original bytecode, it does not necessarily provide a
one-to-one representation of the memory events which occur
at a bytecode level [28]. Secondly, the Jimple transformation
represents stack positions with additional local variables, and
local variable naming is unique within methods only [28]. This
means that at best, we can describe the read/write events on a
per-variable, per-method basis, which limits the power of this
technique. Finally, since our analysis is purely static, we are
not able to extract the nature of the memory events that occur
at runtime (this is of course a challenge associated with the
static analysis of any system, and is not unique to our system
or the Android platform in general).

While the approach outlined above will form the basis of
our future work in the Android domain, we also propose to
port the analysis techniques described in this paper to an x86
framework. With this ported system, we can test the validity
of our shotgun parser definition through analysis of known
shotgun parser samples.

VIII. Conclusion

In this work, we addressed the problem of unprincipled
handling of input data in Android applications from a LangSec
approach. In particular, we focused on identification of the
shotgun parser security anti-pattern. After establishing three
characteristics of a shotgun parser, we turned our attention
to identifying the first of these hallmarks: spread of tainted
input data relative to application control flow graph size. By
modifying the FlowDroid tool for static taint analysis, we
were able to develop a tool which measures the propagation
path length of tainted data originating at each input source
in a target Android application. After analyzing a set of 55
applications to quantify the spread of tainted data relative
to interprocedural control flow graph diameter, we were able
to draw several conclusions. Although there is a significant
variation between apps in terms of the number of tainted
paths observed, we noted that the shape of the distribution of
path lengths was very similar between applications, even those
from disparate categories. In most applications, the majority
of tainted path lengths were short, on average less than 5% of

the overall graph diameter. However, we also found instances
of very long tainted paths, both in individual applications
and associated with particular input sources. These results are
promising for several reasons. The fact that the majority of
average tainted path lengths are less than 5% of their respective
graph diameters in length suggests that the prevalence of
the spread relative to size anti-pattern is not overwhelming.
At the same time, our tool was successful in identifying
instances of tainted paths which were long compared to their
respective diameters. In addition to being useful information
in and of itself, identification of these long paths allows us to
classify likely shotgun parser candidates. We can then focus
on these candidates in the next phase of analysis, which will
be concerned with identification of the second and third of the
shotgun parser characteristics.

IX. Acknowledgements

The authors gratefully acknowledge Steven Arzt at the
European Centre for Security and Privacy by Design for his
ongoing assistance with technical questions about FlowDroid
via the Soot mailing list.

References

[1] I. D. C. (IDC), Online article, 2015. [Online]. Available:
http://www.idc.com/prodserv/smartphone-os-market-share.jsp

[2] J. Drake, “Stagefright: Scary code in the heart
of android,” in Black Hat Briefings, 2015. [Online].
Available: https://www.blackhat.com/docs/us-15/materials/us-15-Drake-
Stagefright-Scary-Code-In-The-Heart-Of-Android.pdf

[3] S. Bratus, T. Darley, M. E. Locasto, and M. L. Patterson, “Langsec:
Recognition, validation, and compositional correctness for real world
security,” USENIX Security BoF Handout, 2013. [Online]. Available:
http://langsec.org/bof-handout.pdf

[4] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” in Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: ACM, 2014, pp. 259–269. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594299

[5] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM Conference
on Computer and Communications Security, ser. CCS ’11. New
York, NY, USA: ACM, 2011, pp. 627–638. [Online]. Available:
http://doi.acm.org/10.1145/2046707.2046779

[6] K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing
the android permission specification,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 217–228. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382222

[7] A. Bartel, J. Klein, M. Monperrus, and Y. Le Traon, “Dexpler: Convert-
ing Android Dalvik Bytecode to Jimple for Static Analysis with Soot,”
in ACM Sigplan International Workshop on the State Of The Art in Java
Program Analysis, 2012.

[8] J. Jeon, K. K. Micinski, and J. S. Foster, “SymDroid: Symbolic Execu-
tion for Dalvik Bytecode,” Department of Computer Science, University
of Maryland, College Park, Tech. Rep. CS-TR-5022, July 2012.

[9] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input
generation system for android apps,” in Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ser. ESEC/FSE
2013. New York, NY, USA: ACM, 2013, pp. 224–234. [Online].
Available: http://doi.acm.org/10.1145/2491411.2491450

[10] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang,
and B. Zang, “Vetting undesirable behaviors in android apps with
permission use analysis,” in Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, ser. CCS
’13. New York, NY, USA: ACM, 2013, pp. 611–622. [Online].
Available: http://doi.acm.org/10.1145/2508859.2516689

[11] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth, “Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smartphones,”
in Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation, ser. OSDI’10. Berkeley, CA,
USA: USENIX Association, 2010, pp. 1–6. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1924943.1924971

[12] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot - a java bytecode optimization framework,” in Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative
Research, ser. CASCON ’99. IBM Press, 1999, pp. 13–. [Online].
Available: http://dl.acm.org/citation.cfm?id=781995.782008

[13] C. Fritz, “Flowdroid: A precise and scalable data flow analysis for
android,” Master’s thesis, Technische Universitat Darmstadt, 2013.

[14] C. Fritz, S. Arzt, S. Rasthofer, E. Bodden, A. Bartel, J. Klein,
Y. le Traon, D. Octeau, and P. McDaniel, “Highly precise taint analysis
for android applications,” EC SPRIDE, Tech. Rep. TUD-CS-2013-0113,
May 2013. [Online]. Available: http://www.bodden.de/pubs/TUD-CS-
2013-0113.pdf

[15] S. Arzt, S. Rasthofer, and E. Bodden, “Susi: A tool for the fully
automated classification and categorization of android sources and
sinks,” EC SPRIDE, Tech. Rep. TUD-CS-2013-0114, May 2013.

[16] A. Chaudhuri, “Language-based security on android,” in Proceedings
of the ACM SIGPLAN Fourth Workshop on Programming
Languages and Analysis for Security, ser. PLAS ’09. New
York, NY, USA: ACM, 2009, pp. 1–7. [Online]. Available:
http://doi.acm.org/10.1145/1554339.1554341

[17] M. Dam, G. Le Guernic, and A. Lundblad, “Treedroid: A tree automaton
based approach to enforcing data processing policies,” in Proceedings of
the 2012 ACM Conference on Computer and Communications Security,
ser. CCS ’12. New York, NY, USA: ACM, 2012, pp. 894–905.
[Online]. Available: http://doi.acm.org/10.1145/2382196.2382290

[18] F. Yamaguchi, M. Lottmann, and K. Rieck, “Generalized vulnerability
extrapolation using abstract syntax trees,” in Proceedings of the 28th
Annual Computer Security Applications Conference, ser. ACSAC ’12.
New York, NY, USA: ACM, 2012, pp. 359–368. [Online]. Available:
http://doi.acm.org/10.1145/2420950.2421003

[19] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and
discovering vulnerabilities with code property graphs,” in Proceedings
of the 2014 IEEE Symposium on Security and Privacy, ser. SP ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 590–604.
[Online]. Available: http://dx.doi.org/10.1109/SP.2014.44

[20] M. L. Patterson, S. Bratus, and D. Hirsch, “Shotgun parsers in the
cross-hairs,” Presented at Brucon 2012, 2012. [Online]. Available:
https://www.youtube.com/watch?v=mLc0cwlVe84

[21] ——, “From ’shotgun parsers’ to better software stacks,”
Presented at Shmoocon 2013, 2013. [Online]. Available:
https://www.youtube.com/watch?v=XVZrmp5MAas

[22] A. D. Guide, Online article, 2015. [Online]. Available:
http://developer.android.com/reference/android/app/Activity.html

[23] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and E. Chin,
“Permission re-delegation: Attacks and defenses,” in Proceedings of
the 20th USENIX Conference on Security, ser. SEC’11. Berkeley,
CA, USA: USENIX Association, 2011, pp. 22–22. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2028067.2028089

[24] S. Arzt, personal communication via Soot mailing list, 09
2015. [Online]. Available: https://mailman.cs.mcgill.ca/pipermail/soot-
list/2015-September/008260.html

[25] ——, personal communication via Soot mailing list, 11
2015. [Online]. Available: https://mailman.cs.mcgill.ca/pipermail/soot-
list/2015-November/008305.html

[26] A. D. Guide, Online article, 2015. [Online]. Available:
http://developer.android.com/reference/android/os/Bundle.html

[27] ——, Online article, 2015. [Online]. Available:
http://developer.android.com/reference/android/os/Parcel.html

[28] R. Vallee-Rai, “Soot: A java bytecode optimization framework,” Mas-
ter’s thesis, School Of Computer Science, McGill University, 2000.

Fig. 12: Category: Books & Reference. Also displays some
variation from the typical distribution pattern.

Fig. 13: Category: Library & Demo

Appendix

In this section, we present some additional path length
histograms of interest. Each histogram displays the frequency
with which different (normalized) path lengths occur. Note that
the axes are not the same for each plot - each axis was chosen
to best represent the data range being displayed.

The path length histograms for all 55 applications tested can
be viewed on our GitHub site at https://github.com/sgpSearch/

ShotgunParsersInAndroidApplications.

Fig. 14: Category: Medical. Appears to deviate from the
typical distribution, but note also that there are no path lengths
greater than 0.1. Therefore overall spread relative to size is still
low.

Fig. 15: Category: Music & Audio. Note the small circled
clusters of long paths at 0.5 and 0.7.

Fig. 16: Category: Tools. This application has a very small
spread relative to size as well as a comparatively small number
of paths.

Fig. 17: Category: Transportation. This app deserves special
mention for having the largest number of paths of any appli-
cation surveyed.

Fig. 18: Category: Weather. Another special mention - we
observed a very large number of tainted paths, however the
longest path is only 0.04 of the total diameter indicating a
very small spread relative to size.

