
Research Report: Analysis of Software for Restricted Computational Environment
Applicability

Jacob I. Torrey and Jonathan Miodownik
Assured Information Security
Greenwood Village, CO, USA

{torreyj, miodownikj}@ainfosec.com

Abstract—Preliminary experiment design and research goals
are presented to measure the applicability of restricted compu-
tational complexity environments in general purpose develop-
ment efforts. The Linux kernel is examined through the lens of
LangSec in order to gain insight into the make-up of the kernel
code vis-à-vis the complexity class of recognizer for input to
each component on the Chomsky Hierarchy. Manual analysis
is assisted with LLVM Passes and comparison with the real-
time Linux fork. This paper describes an on-going effort with
the goals of justifying further research in the field of restricted
computational environments.

Keywords-Walther recursion, Linux, programming lan-
guages, parsing, LLVM, language-theoretic security, LangSec.

I. INTRODUCTION

Language-theoretic security (LangSec) provides two fun-
damental guides for reducing the prevalence and impact of
software vulnerabilities: formal parsing of input and restric-
tion on computational complexity for the environments that
perform operations on untrusted data. LangSec sketches a
unified view of software exploitation, with the concept of
a “weird machine”: an ad hoc, emergent virtual machine
that converts input data into execution flow with unexpected
states and state transitions [1].

This leads to the realization that the data passed to
the application is in fact the program that executes on
the machine instantiated by the code. If these machines
can be limited in their complexity and power, reference
monitors and formal verification can improve the security
when exposed to attacker-controlled input. In a previous
work [2], the authors have shown empirical evidence of the
improvement of verification; this paper aims to outline the
on-going experiments to determine the applicability of re-
stricted computational environments and categorize software
components by their challenge to constrain.

A. Contributions

In [2], the sub-Turing complete programming language
Crema was shown to ease verification and ensured pro-
grammers better provided their intent into implementation,
reducing the risk of certain classes of attack [3] [4]. This
effort aims to determine how applicable these programming
design patterns are to general purpose programming, and

which classes of software modules require more compu-
tational power than others. This research report describes
an on-going effort, and as such is not complete at time of
writing.

II. PROBLEM SPECIFICATION

A. Background

The following sub-sections provide a brief background to
the concepts built-upon in this work.

1) Software Tools for Our Case Study:
LLVM and Clang: The LLVM compiler framework [5]

is a tool-chain of modular components to analyze, optimize,
compile, and execute programs via a standardized byte-code
intermediate-representation (IR). Front-ends parse an input
language, construct an abstract syntax tree (AST), and emit
LLVM IR, which then can leverage the existing optimization
passes, a cross-platform just-in-time compiler, and static
analysis tools to allow for rapid compiler development. One
such front-end parser for the C and C++ programming
languages is Clang, which transforms source files into an
LLVM AST for generation of IR, bit-code or target binaries.

Once an input program has been converted to the IR,
there are a number of tools and libraries that can then
be used to optimize the IR for faster execution or smaller
memory footprint. Chiefly of interest to readers of this paper
is the Pass, a construction for modules that can navigate the
AST either for analysis or modifications. Passes provide a
powerful API into the program’s AST and can specify which
AST elements to inspect or modify: viz., loops, functions,
modules, etc.

Linux Kernel: As a representative software project,
the Linux kernel handles a large number of tasks and is
highly complex. In 2001 the kernel had approximately 2.4
million source lines of code (SLOC) and has been grown
rapidly in order to support multiple CPU architectures and a
multitude of hardware devices. For this research a pared-
down version1 of the kernel was chosen, one supporting
only the Intel x86 architecture. Additionally, device-specific
drivers were deemed out of scope, whereas those for a
general interface (e.g., USB 2.0 or PCI) were left in.

1The kernel was configured and built with the target tinyconfig



B. LangSec-inspired Challenges

LangSec highlights the risks involved with parsing input
into a program’s internal type-system and demonstrates how
a poorly designed or implemented parser creates a risk of
unintended computations. The theory goes further and calls
for input languages to be as restricted as possible, urging
programmers to utilize the minimum amount of computa-
tional expressiveness necessary to validate inputs. This paper
specifically examines the feasibility for software developers
to incorporate these restricted computational environments
into general purpose applications or to refactor existing code
bases into safer programs. A future area of study is the
ability to rapidly assist developers with such refactoring
attempts in order to aid them in shipping more robust and
less vulnerable applications.

III. APPROACH

The goals of this effort, when abstracted are equivalent
to the Halting Problem [6] — determining whether or not a
general algorithm (equivalent to a Turing Machine) will halt
on a given input, or if there are inputs that the algorithm
would never halt on. The scope of this effort is such
that perfect certainty is not expected, instead components
will be grouped into three categories: 1) provably sub-
Turing complete (i.e., in the Walter Recursion complexity
class [7]), 2) possibly sub-Turing with human-in-the-loop
refactoring to remove edge cases that should never be hit
2, and 3) components that require the full expressiveness of
Turing-completeness. The second group is probabilistic, the
component has the design patterns of others than are sub-
Turing or could be made so, but without a human-in-the-loop
knowledgeable of that sub-system or module, no guarantees
can be made.

In order to side-step the Halting Problem, there are a
number of methods the authors foresee utilizing to gather
a reasonably complete picture of the Linux kernel’s compu-
tational power needs. Each of these is described below in
more detail:

A. Low-Hanging Fruit

The fastest method to rapidly classify a large number
of components is with an LLVM Pass designed to mark
every function as sub-Turing that either: does not contain
any looping construct, recursive call or co-recursive call; or
only contains looping constructs that fall within the bounds
of Walter recursion — meaning termination is provable.
These loops may already be candidates for unrolling during
optimization or have fixed bounds. This low-hanging fruit
will quickly separate the kernel code into the “easy” sections

2A concrete example of this is the portable document format in which
normal operations of parsing should always terminate, however the speci-
fication for the format allows for unbounded looping. If refactored, a PDF
parser would be able to correctly parse well-behaved inputs, and reject the
edge-cases indicative of malicious behavior.

that can be ignored by later steps and those that warrant
additional research.

B. RT-Linux Analysis

Once the obvious functions have been classified, an ex-
amination of the Linux real-time (RT) fork will be per-
formed [8]. The RT fork aims to produce a Linux kernel that
can support hard real-time demands for use in safety-critical
applications. Through considerable developer effort, the RT
kernel has been modified where the core scheduling loop
passes execution to tasks given a fixed amount of time to
complete their processing. Through examination of the core
scheduling loop and associated routines, a set of components
that should demand unbounded looping and can confidently
be placed in the third grouping of components.

C. Assisted-Manual Analysis and Heuristics

Once the low-hanging fruit have been sorted into the first
and third category, the remaining routines will be those that
require more intensive analysis. From this point, human-in-
the-loop analysis is expected to manual classify the functions
remaining. As each function is classified, the abstract syntax
tree (AST) patterns for the function or component will be
combined the classification to train a binary classifier to
make an approximate “guess” for the remaining components
not clearly in first or third group. It is expected that as the
human-in-the-loop process continues, new patterns of sub-
Turing complete functions will be detected, and these pat-
terns fed into a LLVM Pass to classify all similar functions
into the first group.

IV. EXPERIMENT SETUP

The modern Linux 4.x kernel will be utilized as well as
LLVM and clang-3.8. A number of patches to the build
settings and Makefiles must be made in order to coerce
the kernel to build with clang. Additionally there are a few
assembly files with GNU assembler-specific macros that
must be expanded in order for the build to succeed. The
kernel is configured with make tinyconfig to generate
the target minimal set for processing and analysis.

With a kernel building with clang-3.8, the build scripts
will be modified to ensure the compiler outputs LLVM
bitcode intermediate representation of the AST to disk to be
analyzed by the LLVM Passes developed under this effort.
As the kernel has a complex build process, each LLVM Pass
writes the findings as machine-readable JSON files to be
consumed by a final pass to collate and perform analytics on
the output from multiple sub-systems and build directories.

A. Results and Discussion

As this is a research report on an on-going effort, the
results are not ready at this time. A camera-ready report
would contain the latest findings. Interpreting the findings
of this effort will be aided through the use of the following
metrics:



Raw Percentage SLOC By Group: The most apparent
measurement for this effort is the raw percentage of the
source lines of code (SLOC). The build scripts for the kernel
have been modified to track dependencies for all compilation
steps, then de-duplicate across every object built, followed
by analysis of total SLOC by the sloccount utility [9].
Once total SLOC has been calculated, the functions in each
group have their respective SLOC counts analyzed.

This metric is valuable in making a case for considering
LangSec during design of development projects; if the per-
centage of functions in the third group is minimal, architects
and developers can write most of their code with sub-Turing
environments in mind, with full Turing-completeness as a
outlier left to senior developers. Raw percentage does not
provide the full picture to truly make a case for changing
software design paradigms, the benefits of such a shift must
be taken into careful consideration.

Profiled Execution Percentage: To ensure any effort to
change software design is a valuable contribution w.r.t. the
safety of developed applications, a stronger case must be
made through another metric. If the findings from this effort
show that a sizable majority of the code analyzed could be
executed in a constrained computational environment, but
these regions of code are seldom executed compared to the
full Turing-complete functions, the safety benefits would be
diminished. In order to measure this, the kernel will be pro-
filed under a few typical workloads [10] to categorize which
routines are most commonly executed and this mapped to
the aforementioned groupings. This measurement provides
an approximation of the impact of constraining functions
from groups one and two towards the safety of the entire
program.

The well-known Risk = Threat × V ulnerability ×
Consequence formula [11] is used in analyses to attempt
to objectively categorize risks facing an organization or
security posture. By using a profiled view of the kernel, the
authors aim to provide a better metric for risk of software
compromise (assuming the consequence of remote code
execution in the kernel is constant across the code). This
metric is imperfect in that it fails to determine whether
the code that may have vulnerabilities or is in a more
powerful computational group is reachable by attacker-
controlled input. In future efforts, exploring methods to
better categorize attacker access would provide a better data-
set than scheduling time on the CPU. An example could be a
driver that only responds to certain types of device messages
(e.g., USB packets) and may not be scheduled to run very
often, though if an attacker could craft a malicious input, it
would be able to compromise the kernel.

V. CONCLUSION

This work aims to measure the feasibility of developing
general purpose applications with a closer eye towards the
computational complexity of each component. By measuring

the make-up of a representative software program tradi-
tionally considered “complex” (the Linux kernel), insight
into the trade-offs for further research and changing de-
velopment practice are realized. The authors posit that, for
many components of software projects, the fully expressive,
Turing-complete environment is overly powerful and carries
a significant (and realized) risk of compromise. Through the
use of a restricted execution model, software safety can be
increased and software design paradigms altered to consider
the benefits of a LangSec-inspire approach.

ACKNOWLEDGMENTS

This research was developed with funding from the De-
fense Advanced Research Projects Agency (DARPA) on the
STAC program3.

REFERENCES

[1] J. Vanegue, “The weird machines in proof-carrying code,” in
Proc. First Annual Langsec Workshop, May 2014.

[2] J. Torrey and M. Bridgman, “Verification state-space reduc-
tion through restricted parsing environments,” in Security and
Privacy Workshops (SPW), 2015 IEEE, May 2015, pp. 106–
116.

[3] M. Dowd. (2003) Sendmail release notes for the crackaddr
vulnerability.

[4] J. Vanegue, S. Heelan, and R. Rolles, “Smt
solvers for software security,” in Proceedings of the
6th USENIX Conference on Offensive Technologies,
ser. WOOT’12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 9–9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2372399.2372412

[5] C. Lattner. (2015) The LLVM compiler infrastructure.
[Online]. Available: http://llvm.org/

[6] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to
Automata Theory, Languages, and Computation (3rd Edition).
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2006.

[7] C. Walther, “Security applications of formal language theory,”
Artificial Intelligence, vol. 70, no. 1, 1994.

[8] L. R. Team. (2015) Rtwiki. [Online]. Available:
https://rt.wiki.kernel.org/index.php/Main Page

[9] D. A. Wheeler. (2002) More than a giga-
buck: Estimating gnu/linux’s size. [Online]. Available:
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html

[10] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D.
dissertation, Princeton University, January 2011.

3The views, opinions, and/or findings contained in this article are those
of the authors and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.



[11] L. A. T. Cox, Jr, “Some limitations of risk = threat
vulnerability consequence for risk analysis of terrorist
attacks,” Risk Analysis, vol. 28, no. 6, pp. 1749–1761,
2008. [Online]. Available: http://dx.doi.org/10.1111/j.1539-
6924.2008.01142.x


