
Buy/by the Book or Bye-Bye the Game

A talk for LangSec Workshop, 2016

M. Douglas McIlroy

Dartmouth College

ABSTRACT

To banish the ominous scenario of garbage in, evil out,

we must reject bad stuff no matter how closely it resembles

good. For that, we need to precisely define the good, assure

that it can be identified accurately, and handlle it correctly.

Formal methods come to the fore. If you call this a platitude,

you are right. The hard part is to thoroughly buy into it and

keep the faith in the face of myriad temptations and

compulsions to do otherwise. Among the challenges are

technical subtleties that lurk behind the innocuous adverb

"thoroughly".

I questioned Sergey when he invited me to give this talk. What could

someone who hasn’t been in the trenches since before the turn of the century



-2-

offer an audience of folks facing genuine 21st-century problems? Well,

maybe I’d been there and done that, or maybe 60-odd years of experience

would somehow lend gravitas, or maybe my sympathy for formal methods is

especially apt in the setting of LangSec.

In any any event, if I’m not still in the trenches, I do know what it’s

like to be in a hole. My first experience of international data theft happened

exactly 40 years ago.

I had written a real-time text-to-speech program. It was something of a

sensation, and I showed it off many times. It depended on a special computer

attachment called the Votrax made by guess what famous electronics

company? ... Federal Screw Works. To demonstrate the program live, I

would feed input to our lab computer via dial-up modem and get the audio

via a speakerphone connection.

Audiences participated enthusiastically as they vied to defeat the

program’s heuristics for sounding out the famously non-phonetic spellings of

English words. Of course the program melted down on foreign names like

Beethoven, which came out "beet oven". But the best challenge came from

Professor Saul Gorn at the University of Pennsylvania. He proposed

"coworker". The computer gamely responded "cow orker".

But I digress. You folks are supposed to be interested in vulnerability

of interfaces, not of pronunciations. Bear with me, though. I’m getting

getting there.

One of these talking-computer demmos brought me face-to-face with

computer crime. The venue was student computer club in Canada.

So. Unix had good password protection ... in principle. Because I had

nothing to hide, I chose the empty password. Sure, I had superuser rights,



-3-

but those were protected by a real password.A few weeks after the demo, a

phone bill forwarded to the computer club listed the calls to our computer

and Votrax. Curious students tried it, guessed my easy login name, and were

rewarded by a free login.

They promptly looked around for the system source, fetched it, diffed

it with the legitimate version they had, and folded interesting changes into

their locally modified system. Some time later, a faculty member got wind of

the caper, and with great chagrin called us to apologize, for by then there

was no way he could unwind the misdeed.

My blithe belief that my password didn’t matter led to international

software theft. Fortunately the stolen software was soon released, and the

misdeed was erased.

The incident was certainly due to user error. But it was developer files

that got stolen. It would have been wise to vet the complexity of passwords,

much as that might offend the cleanliness of Unix design.

The incident made me gun-shy. Not long after, the office of the CEO

of AT&T learned that our lab could do typesetting. Could we teach one of

their secretaries to enter speeches for the chairman and have them printed in

big type so he wouldn’t hav eto wear glasses in public? Sure, why not? It’s

always nice to have a channel to the top.

Of course, once they learned to enter documents, they started using

our computer for other things. Among them were minutes of board meetings,

marked private. Asthe most visible Unix system in the world, we were

regularly poked at. We also had a dozen or so superusers. We couldn’t

guarantee to protect board minutes. (This was attested by the very fact that

we had discovered them.) Not wanting to be burned again, I invited the vice



-4-

president for public relations to buy a computer for the chairman’s office.

And thus Unix got embedded at the apex of AT&T.

The Unix theft was indeed a lesson. Today most everybody in

important projects is fully aware of the hazards of shortcutting security on

the grounds that ‘‘nobody knows about’’ some subvertible feature.Yet the

phenomenon persists in profusion.

Back in the 1980s, a developer of AT&T switching systems showed

one of our people how they could patch central offices remotely. This they

did by calling up a small Unix system connected to a switch. The onlooker

was startled to see that the call was answered not with a login challenge but

with a superuser prompt. The developer asssured him that was OK because

nobody knew the phone number. The idea that it’s no big deal to check

10,000 phone numbers was news to him.

Thirty years on,c’est la m̂eme chose.A few weeks ago I attended a

talk [by Dan Tentler, atenlabs.com] that presented dozens of examples from

the internet of things that were vulnerable due to the same blasé attitude, that

what you think they don’t know can’t hurt you. All kinds of control

systems, especially heating, ventilation, and air-conditioning systems, but

also industrial and public-utility control systems, are sold with laughable

protection against remote meddling.A crawl of pertinent IP ports is bound

to be rewarded.

There was a lesson, too, in the affair of the CEO’s eyesight. Nomatter

how benign expected applications may seem, sensitive uses may arise. It

may seem rather harmless if an idle kid can tinker with the temperature of a

faraway building. It can always be reset. But who knows what other

mischief can be done at the controls? And in some buildings the temperature



-5-

may really be critical, as in a biology lab, where a spike of heat or cold could

ruin a long-running experiment.

Formal methods to the fore

So what do these stories have to do with LangSec? They all exemplify

human inattention to potential threats or misapprehension of potential

threats. The old saying, "to err is human", applies just as much to developers

as to anybody else. The vulnerability of internet-connected control systems

is a case in point.

Developers need all the help they can get to assure a sound product.

All too many forces are arrayed against them. At the top of the list is

marketing: the urge to get out there first with the most features. Performance

is another driver; customers want more bang for the buck.

These demands come up against cost constraints: every project has

limited resources, and the drive to allocate time and money to marketing

objectives usually works at cross-purposes with less visible aspects of

quality.

Safety and security tend to be early losers in the battle for resources.

The short-term outcome of this tendency can be rewarding. It served Takata

well for many years. Volkswagen pushed beyond mere dismissal of the

issues into outright fraud. There’s hell to pay now.

These systemic obstacles arise partly due to insufficient imagination

about the downside of the tradeoffs. They are essentially other manifestions

of the belief that "what you think people don’t know can’t hurt you."

The pressures to produce more features and more performance bring

further dangers. One is feature interaction. Roughly speaking, one needs to



-6-

test each new feature against an ever-growing background of preexisting

features. If only pairwise interactions matter, the marginal cost of testing a

new feature grows linearly with the feature count.

I submit, though, that serious pairwise feature-testing is rarely done.

What, for example, is the point of testing for interactions between

supposedly unrelated features?For one thing, all too often nominal

independence may have been violated, particularly in the interest of

efficiency. For example, some basic service may have been surreptitiously

accessed via a side door, leading to an inconsistent view of system state.

Moreover if concurrency is inv olved (and when is it not?) testing may not be

very revealing anyway. Finally there is the possibility of inherently

multiway feature interactions, testing for all of which may be completely

infeasible.

Marketing will almost always want more features while engineering

will prefer less. The best hope that can be held out for reconciliation is that

with a broader view one may find generalizations that cover a multitude of

features. The rewards of doing so may well be worth the pain of major

refactoring.

Performance demands bring another danger: optimization. Dijkstra

likened optimization to walking on the edge of a cliff. I would go further.

Successive optimizations are like fractal refinments: the more you optimize

the hairier the edge of the cliff becomes. Almost any direction in which you

might try to step leads into the abyss.

The LangSec vision foresees a shield against such dangers. More

automatic methods of providing defensive measures can save dev elopment

time, and thereby overcome management incentives to cut corners. At the



-7-

same time they help ensure against developers’ outright mistakes.

Thus a central concern of any approach informed by Langsec must be

formal methods and their embodiment in mathematically based tools. Use

them thoroughly. Use them early. Use them often.

Of course we all use lots of quality-assurance tools every day, for both

generation and analysis of programs. Few people attempt to hand-code

parsers any more. And largely automatic generators of device drivers have

been around for decades, though they are far from well known.

On the analysis side, many compilers offer lots of diagnostics about

things like possibly unintended type conversions and code with no effects.

Optimizing compilers often give program-flow diagnostics like detecting

program paths that use variables before they are set. These services are free

side benefits of something you had to do anyway.

Even if you’re leery of radical optimization, it may be worth using it

merely for the diagnostics that may issue from deeper analysis. More

generally, If you don’t always dial the warning level to the max, you’re not

with the program.

Programs like Lint look for for other questionable practices. Code-

coverage analysis helps tune the effectiveness of regression tests. Microsoft

subjects released software to even deeper analysis, such as automated

recognition of potential buffer overflows.

Small tweaks are a well known source of grief. If a small change

accomplishes what it was supposed to and passes a standard battery of

regression tests, it’s likely to be blessed as ready to go. The acceptance test

for the change is added to the regression suite and the product is shipped.

Other things you do with big new code, like checking the regression tests for



-8-

code coverage, may seem to be unnecessary.

That’s just what I thought about a tiny enhancement I once installed in

a main-line program. The program had never failed in the field, but this time

I got an error report almost overnight.

When I first created this quite complicated program, I labored hard to

construct tests that got 100% code coverage. Sure enough, the dozen-or-so

lines of new code contained a branch that the regression tests never

exercised. Itwas a corner case that I had thought of, but got wrong, and

inadvertently installed without testing. If I had kept up my previous

practice, my error would have been spotted by the coverage tool, and not by

a customer.

The lesson is clear. No change is small.

No change at all? What could go wrong with something as trivial as

correcting the spelling of a diagnostic message?Well, it might become

longer and lead to buffer overflow or truncation.

In the matter of spelling, lots of software ‘‘gracefully’’ handles

overlong names by truncating them. Eleven-digit mnemonic phone numbers

like 800-CALL-AJAX count on the telephone system to do so. But all kinds

of things go wrong when parties to a transaction have different ideas of

what’s being said.

I remember one website-maintenance program that quietly truncated

file names to 23 characters. This had the effect of mangling file extensions.

With a file’s extension unknown, browsers would have to guess how to

render it. The results could be wildly different depending on the heuristics

used in guessing. Imagine, for example, whathappens when you treat PDF

as plain text.



-9-

And speaking of heuristics, browsers all contain AI in deference to

Postel’s notorious ‘‘robustness’’ principle. The hope that senders will be

exacting in their conformance to standards and receivers should be tolerant

of deviations might well be expressed as ‘‘always trust strangers’’. Way back

when, the principle was commended in the HTML standard. It has long

since been removed, but its legacy of chaos lives on.

LangSec’s manifesto is the antithesis of Postel’s principle. For

LangSec robustness means intolerance for garbage, not tolerance, because

who knows what diseases it may carry.

And yet, we really want to make sense of what people we want to hear

have to say. At the same time, we know that computers lack judgment about

whether or not to act on the basis incoming information. Is there no safe

middle ground?

In fact there often is: garbage gets corrected by feedback, ranging

from low-level ack-nak protocols up to customer-service hot lines. Here is a

social-science LangSec problem. Garbage, of which nonconforming web

pages are a prime example, should be corrected at the source, not the

receiver. Can mechanisms be devised that will encourage correcting rather

than perpetuating the trouble?

Protocol analysis and scaling up

Formal methods have been most thorougly adopted in the field of

protocol design. Protocols are usually fairly small. Yet they are hard to

reason about because of concurrency and nondeterminism.

Wise designers submit new protocols for automated model-checking

before doing a line of implementation. As always, the sooner errors are



-10-

found, the easier a less costly they are to fix. Thus the design should be

rechecked after every tweak and refinement, no matter how trivial.

So far so good. But how closely connected is a checked model to the

associated product? Is the model kept up to date with the product? How is it

verified that the model actually represents the product?

Modern build systems generally assure that every change at least gets

a regression test. But that’s for the code. Model-checking is prebuild. Does

your build system know anything about models? Is the only connection of

models to the build system indirect? Is that indirection via parenthood, in

which a coder works from the model? Or is it merely cousinhood, in which

both model and product are created from the same informal spec—probably

by different people?

In the hardware world, much implementation works straight from a

model—logic equations. But there’s a further trick that so far has almost no

analog in software. That is logic extraction. To confirm that the tool chain

has behaved faithfully, logic is inferred from the geometric layout of a chip

and compared against the original equations.

In the messier world of software, Jet Propulsion Lab has made big

strides towards assuring that the model reflects the product. They extract a

model, at least at the level of process interactions from the code itself.I find

the idea mind-boggling, but who can quibble with the Mars rover?

‘‘ Opportunity’’ is still operating after 50 times its planned life span, with all

of its code—not just protocols—having been verified by this technique.

Of course model extraction wasn’t the sole program analysis tool on

the JPL project. The code was written in C, and they had stringent rules

about style. If I remember correctly, they insisted that function returns be



-11-

used.

Even the most stringent of the customary style-checking programs I

know do not go so far as to report on unused function returns. Presumably

this is because the practice is so widespread—in particular in connection

with error returns from I/O functions.

From a LangSec standpoint this is unpardonable How can a program

that doesn’t know it has misread data pretend to understand whether the data

is good?

In terms of the title of this talk, even if you buy into the doctrine of

LangSec, you won’t really be living by it if you ignore the low-hanging fruit

of error returns. That’s one service of formal methods—to sweat the small

stuff.

Dr. Richard Carlson says it’s all small stuff and we shouldn’t sweat it.

He’s right. As a psychotherapist, he says forget about it. Do that in

LangSec’s world and you’ve lost the game. Keep calm and rely on

automated formal methods.

I hav ealready mentioned optimizing compilers. They are certainly the

most widely used program-analysis tools. Many, especially compilers for

functional languages, have a substantial formal basis. But if you’re like me,

you shrink from using the highest optimization levels. These are

monumental products whose capability has evolved by accumulating

features for decades. Adverse feature interaction is a real worry. On the

other hand they hav ehad the bejeesus tested out of them.

Yet they still have bugs. Bill McKeeman subjected one production

compiler to devilishly constructed random tests for two years. During that

interval the rate of bug discovery remained fairly constant at about one per



-12-

day. Not encouraging for LangSec. But look again at JPL. They set out a

discipline of programming and as far as possible enforced it mechanically.

They carried out extensive formal verification. When something turned out

to be unverifiable (which isn’t the same as being wrong), they would try to

fix it so it could be verified or flag it for more detailed scrutiny.

It’s the same way with buffer overflows at Microsoft. The specter of

having to rewrite to shut off an automated complaint induces better writing

practices in the first place.

Management

Deadlines and performance goals always loom over this Utopia of

formal methods.We know in our hearts that cutting corners to get things

done is likely to make a shabby product with maintenance problems down

the road. But do we behave as if we believe it?

One symptom that we don’t is premature optimization. Just because

you know a fast way to do something is insufficient reason to do so. The

Linux kernel, I am told, is full of binary-search table lookups. A corollary is

that tables must be kept in order—a fact with far-reaching consequences, and

an unnecessary flirtation with Dijkstra’s cliff. One shouldn’t take on the

extra commitment until one is sure that it will make a real difference.

An example is the ISO protocol stack. Fear of a fully layered

implementation running slow may spur one to handcraft a collapsed stack,

keeping the separated concerns all in mind simultaneously. It was long ago

shown that an orderly implementation of the stack can be collapsed

automatically to meet the needs of special applications. [Optimizing

Layered Communication Protocols, in Proceedings of the Sixth IEEE



-13-

International Symposium on High Performance Distributed Computing,

1997. 169- 177] Work done once to make such a tool pays off handsomely

in avoiding the labor and bugs of doing it repeatedly by hand.

And writing such tools is more fun than writing everyday code. The

only reason not to is featherbedding, a term that describes the practice of

requiring firemen on diesel locomotives, despite the fact that diesels have no

boilers to stoke.

Still, what do you do when management complains you’re late

because you’re too careful. Ideally—and I think practically, too—the

methods should be justified up front. Bad product will come home to roost.

But more to the point, if the methodology is thoroughly adopted you will

probably win on both quality and schedule.

So it was in one trial back in my days at Bell Labs. A small team

convinced management to let them work off to the side to build a competitor

for a product being developed by traditional methods by a team at least five

times the size. The competition was halted after the small team had found

and fixed so many bugs in the specs that it would have been

counterproductive to let the traditional team continue in the dark.

[http://spinroot.com/gerard/pdf/hamburg94.a]

LangSec promises that kind of success. Go for it.


