Buy/by the Book or Bye-Bye the Game
A talk for LangSec Wor kshop, 2016

M. Douglas Mcllroy

Dartmouth College

ABSTRACT

To banish the ominous scenario of garbage in, evil out,
we must reject bad sfuio matter hev closely it resembles
good. Fer that, we need to precisely define the good, assure
that it can be identified accuratedpnd handlle it correctly.
Formal methods come to the fore. If you call this a platitude,
you are right. The hard part is to thoroughly buy into it and
keep the faith in the face of myriad temptations and
compulsions to do otherwise. Among the challenges are
technical subtleties that lurk behind the innocuous adverb

"thoroughly".

| questioned Sergewhen he invited me to g this talk. What could

someone who hadrbeen in the trenches since before the turn of the century

_2-

offer an audience of folks facing genuine 21st-century problems? Well,
maybe I been there and done that, or maybe 60-odd years of experience
would somehw lend gravitas, or maybe my sympator formal methods is

especially apt in the setting of LangSec.

In ary any event, if I'm not still in the trenches, | do kmowhat it's
like to be in a ble. My first experience of international data theft happened

exactly 40 years ago.

| had written a real-time text-to-speech program. It was something of a
sensation, and | showed if ofiary times. It depended on a special computer
attachment called the Votrax made by guess what famous electronics
company? ... Federal Ser&Vorks. To demonstrate the progranvéy |
would feed input to our lab computer via dial-up modem and get the audio

via a speakerphone connection.

Audiences participated enthusiastically aythied to defeat the
programs heuristics for sounding out the famously non-phonetic spellings of
English words. Of course the program melted down on foreign names like
Beethaen, which came out "beeven". Butthe best challenge came from
Professor Saul Gorn at the Weisity of Pennsylvania. He proposed

"coworker". The computer gamely respondedwWcwker".

But | digress. You folks are supposed to be interested in vulnerability
of interfaces, not of pronunciations. Bear with me, though. I'm getting

getting there.

One of these talking-computer demmos brought me face-to-face with

computer crime. The venue was student computer club in Canada.

So. Unix had good password protection ... in principle. Because | had

nothing to hide, | chose the empty password. Sure, | had superuser rights,

_3-

but those were protected by a real passwordvwAvieeks after the demo, a
phone bill forwarded to the computer club listed the calls to our computer
and Votrax. Curious students tried it, guessed my easy login name, and were

rewarded by a free login.

They promptly looked around for the system source, fetched it, diffed
it with the legitimate version tlyehad, and folded interesting changes into
their locally modified system. Some time lagefaculty member got wind of
the caperand with great chagrin called us to apologize, for by then there

was no way he could unwind the misdeed.

My blithe belief that my password didmhatter led to international
software theft. Fortunately the stolen software was soon released, and the

misdeed was erased.

The incident was certainly due to user erBut it was deeloper files
that got stolen. It would va keen wise to vet the complexity of passwords,

much as that might offend the cleanliness of Unix design.

The incident made me gunyshNot long afterthe office of the CEO
of AT&T learned that our lab could do typesetting. Could we teach one of
their secretaries to enter speeches for the chairman aadhkan printed in
big type so he wouldhhaveto wear glasses in public? Sure,ywiot? It's

always nice to hee a tiannel to the top.

Of course, once tlydearned to enter documents,tisarted using
our computer for other things. Among them were minutes of board meetings,
marked prvate. Asthe most visible Unix system in the world, we were
regularly poked at. Wdso had a dozen or so superusers.dddldn’t
guarantee to protect board minutes. (This was attested by the very fact that

we had disceered them.) Not wanting to be burned again, | invited the vice

4-

president for public relations to buy a computer for the chaisrdince.
And thus Unix got embedded at the ape AT&T.

The Unix theft was indeed a lesson. Today meaty®ody in
important projects is fullywaare of the hazards of shortcutting security on
the grounds that “nobody knows abogtbme subertible feature. Yet the

phenomenon persists in profusion.

Back in the 1980s, a ddoper of AT&T switching systems showed
one of our people othey could patch central offices remoteRhis they
did by calling up a small Unix system connected to a switch. The onlooker
was dartled to see that the call was answered not with a login challenge but
with a superuser prompt. Thevéoper asssured him that was OK because
nobody kne the phone numberThe idea that i§ no bg deal to check

10,000 phone numbers was news to him.

Thirty years ong’est la neme chose A few weeks ago | attended a
talk [boy Dan Tentleratenlabs.com] that presented dozens of examples from
the internet of things that were vulnerable due to the same dtiaisde, that
what you think the don’t know can't hurt you. All kinds of control
systems, especially heating, ventilation, and air-conditioning systems, but
also industrial and public-utility control systems, are sold with laughable
protection against remote meddling.crawl of pertinent IP ports is bound

to be revarded.

There was a lesson, too, in thé&aafof the CEOS eyesight. Nomatter
how benign expected applications may seem, sersides may arise. It
may seem rather harmless if an idle kid can tinker with the temperature of a
faraway building. It can alvays be reset. But who knows what other

mischief can be done at the controls? And in some buildings the temperature

-5-

may really be critical, as in a biology lab, where aspikheat or cold could

ruin a long-running experiment.

Formal methodsto thefore

So what do these storiesviedo do with LangSec? Theall exemplify
human inattention to potential threats or misapprehension of potential
threats. The old saying, "to err is human", applies just as muckdioplers
as to anybody else. The vulnerability of internet-connected control systems

IS a case in point.

Developers need all the help thean get to assure a sound product.
All too mary forces are arrayed against them. At the top of the list is
marketing: the urge to get out there first with the most features. Performance

Is another dxier; customers want more bang for the buck.

These demands come up against cost constrauety. @oject has
limited resources, and the it dlocate time and moryeto marketing
objectives usually works at cross-purposes with less visible aspects of

quality.

Safety and security tend to be early losers in the battle for resources.
The short-term outcome of this tendgican be revarding. It served Takata
well for mary years. Volkswagen pushed beyond mere dismissal of the

issues into outright fraud. Thesd®ll to pay nav.

These systemic obstacles arise partly due to insufficient imagination
about the downside of the tradeoffs. Y¥laee essentially other manifestions

of the belief that "what you think people dbkhow can't hurt you."

The pressures to produce more features and more performance bring

further dangers. One is feature interaction. Roughly speaking, one needs to

-6-

test each ne feature against aver-growing background of preexisting
features. If only pairwise interactions mattbe marginal cost of testing a

new feature grows linearly with the feature count.

| submit, though, that serious pairwise feature-testing is rarely done.
What, for example, is the point of testing for interactions between
supposedly unrelated featureB@ one thing, all too often nominal
independence may Y& been violated, particularly in the interest of
efficieng. For example, some basic service mayeheen surreptitiously
accessed via a side dpbrading to an inconsistent weof system state.
Moreover if concurreng is invdved (and when is it not?) testing may not be
very revealing anyway Finally there is the possibility of inherently
multiway feature interactions, testing for all of which may be completely

infeasible.

Marketing will almost alvays want more features while engineering
will prefer less. The best hope that can be held out for reconciliation is that
with a broader v one may find generalizations thatvepa nultitude of
features. The meards of doing so may well be worth the pain of major

refactoring.

Performance demands bring another danger: optimization. Dijkstra
likened optimization to walking on the edge of a cliff. | would go further.
Successie qtimizations are lik fractal refinments: the more you optimize
the hairier the edge of the ¢lfecomes. Almost gndirection in which you

might try to step leads into the abyss.

The LangSec vision foresees a shield against such dangers. More
automatic methods of providing defaeressimeasures can ga cevdopment

time, and therebywv@rcome management incerds to ait corners. At the

_7-

same time thehelp ensure againstddopers’ outright mistakes.

Thus a central concern ofyagpproach informed by Langsec must be
formal methods and their embodiment in mathematically based tools. Use

them thoroughlyUse them earlyUse them often.

Of course we all use lots of quality-assurance togsyeday, for both
generation and analysis of programswpeople attempt to hand-code
parsers anmore. And largely automatic generators of deviceetsi have

been around for decades, thouglytae far from well known.

On the analysis side, manompilers offer lots of diagnostics about
things like possibly unintended type cesrsions and code with no effects.
Optimizing compilers often ge pogram-flav diagnostics lile detecting
program paths that use variables beforg Hne set. These services are free

side benefits of something you had to do anyway.

Even if you're leery of radical optimization, it may be worth using it
merely for the diagnostics that may issue from deeper analysis. More
generally If you dont aways dial the warning lesl to the max, you're not

with the program.

Programs like Lint look for for other questionable practices. Code-
coverage analysis helps tune the effeatiess of regression tests. Microsoft
subjects released software t@® deeper analysis, such as automated

recognition of potential buffernverflows.

Small tweaks are a well known source of grief. If a small change
accomplishes what it was supposed to and passes a standard battery of
regression tests, #tlikely to be blessed as ready to go. The acceptance test
for the change is added to the regression suite and the product is shipped.

Other things you do with big mecode, like dhecking the regression tests for

-8-

code coerage, may seem to be unnecessary.

That's just what | thought about a yienhancement | once installed in
a main-line program. The program hadvaefailed in the field, but this time

| got an error report almostvernight.

When | first created this quite complicated program, | labored hard to
construct tests that got 100% codeaerage. Sure enough, the dozen-or-so
lines of nev code contained a branch that the regression tegés ne
exacised. Itwas a @rner case that | had thought of, but got wrong, and
inadvertently installed without testing. If | had kept up my previous
practice, my error would ka been spotted by the werage tool, and not by

a astomer.
The lesson is clealNo change is small.

No change at all? What could go wrong with something as trivial as
correcting the spelling of a diagnostic messagésl, it might become

longer and lead to buffeverflow or truncation.

In the matter of spelling, lots of software “gracefullyandles
ovelong names by truncating them. #a-digit mnemonic phone numbers
like 800-CALL-AJAX count on the telephone system to do so. But all kinds
of things go wrong when patrties to a transactioreltferent ideas of

what'’s being said.

| remember one website-maintenance program that quietly truncated
file names to 23 characters. This had the effect of mangling file extensions.
With a files extension unknown, browsers wouldvedo guess hw to
render it. The results could be wildly different depending on the heuristics
used in guessing. Imagine, fotaenple, whahappens when you treat PDF

as plain text.

-9-

And speaking of heuristics, browsers all contain Al in deference to
Postels notorious “robustnessprinciple. The hope that senders will be
exacting in their conformance to standards and veceshould be tolerant
of deviations might well be expressed aswayjs trust strangers”. Way back
when, the principle was commended in the HTML standard. It has long

since been renved, but its lgacy o chaos lves an.

LangSecs manifesto is the antithesis of Possgitinciple. For
LangSec robustness means intolerance for garbage, not tolerance, because

who knows what diseases it may carry.

And yet, we really want to maknse of what people we want to hear
have b |ay. At the same time, we kmothat computers lack judgment about
whether or not to act on the basis incoming information. Is there no safe

middle ground?

In fact there often is: garbage gets corrected by feedback, ranging
from low-level ack-nak protocols up to customer-service hot lines. Here is a
social-science LangSec problem. Garbage, of which nonconforming web
pages are a prime example, should be corrected at the source, not the
recever. Can mechanisms be devised that will encourage correcting rather

than perpetuating the trouble?

Protocol analysis and scaling up

Formal methods ha been most thorougly adopted in the field of
protocol design. Protocols are usually fairly small. Yey twe hard to

reason about because of concuryesrtd nondeterminism.

Wise designers submitweorotocols for automated model-checking

before doing a line of implementation. Asvays, the sooner errors are

-10-

found, the easier a less costlyytlaee to fix. Thus the design should be

rechecked afternvery tweak and refinement, no mattemhiivial.

So far so good. But oclosely connected is a checked model to the
associated product? Is the model kept up to date with the produeti3 Ho

verified that the model actually represents the product?

Modern build systems generally assure tatyechange at least gets
a regession test. But thatfor the code. Model-checking is prebuild. Does
your build system kne anything about models? Is the only connection of
models to the build system indirect? Is that indirection via parenthood, in
which a coder works from the model? Or is it merely cousinhood, in which
both model and product are created from the same informal spec—probably

by different people?

In the hardware world, much implementation works straight from a
model—Ilogic equations. But thesea urther trick that so far has almost no
analog in software. That is logic extraction. @nfirm that the tool chain
has beheed faithfully, logic is inferred from the geometric layout of a chip

and compared against the original equations.

In the messier world of software, Jet Propulsion Lab has made big
strides tavards assuring that the model reflects the producty €kieact a
model, at least at thevd of process interactions from the code itselfind
the idea mind-boggling, but who can quibble with the Mavsrfo
“ Opportunity’ is still operating after 50 times its planned life span, with all

of its code—not just protocols—having been verified by this technique.

Of course model extraction wasthe sole program analysis tool on
the JPL project. The code was written in C, ang tiael stringent rules

about style. If | remember correcttey insisted that function returns be

-11-

used.

Even the most stringent of the customary style-checking programs |
know do not go so far as to report on unused function returns. Presumably
this is because the practice is so widespread—in particular in connection

with error returns from 1/O functions.

From a LangSec standpoint this is unpardonabl& €ém a program
that doesrt’know it has misread data pretend to understand whether the data

Is good?

In terms of the title of this talkyven if you buy into the doctrine of
LangSec, you womnteally be living by it if you ignore the low-hanging fruit
of error returns. That'one service of formal methods—to sweat the small
stuff.

Dr. Richard Carlson says #'dl small stuf and we shouldri’sweat it.
He’s ight. As a psychotherapist, he says forget about it. Do that in
LangSecs world and yowe lost the @me. Keep calm and rely on

automated formal methods.

| havealready mentioned optimizing compilers. Vlaee certainly the
most widely used program-analysis tools. Maespecially compilers for
functional languages, i@ a sibstantial formal basis. But if you're &kre,
you shrink from using the highest optimizatiowds. These are
monumental products whose capability hagved by accumulating
features for decades. Adverse feature interaction is a real. \@ortize

other hand thehavehad the bejeesus tested out of them.

Yet they still have khugs. Bill McKeeman subjected one production
compiler to devilishly constructed random tests fav ywars. During that

interval the rate of bug diseery remained fairly constant at about one per

-12-

day Not encouraging for LangSec. But look again at JPLyBatout a
discipline of programming and as far as possible enforced it mechanically.
They carried out extenge formal verification. When something turned out
to be unerifiable (which isnt the same as being wrong), yheould try to

fix it so it could be verified or flag it for more detailed scrutin

It’'s the same way with buffeverflows at Microsoft. The specter of
having to rewrite to shut ban automated complaint induces better writing

practices in the first place.

M anagement

Deadlines and performance goalwals loom wer this Utopia of
formal methods.We know in our hearts that cutting corners to get things
done is likely to ma& a iabby product with maintenance problems down

the road. But do we betva & if we believe it?

One symptom that we ddn$ premature optimization. Just because
you knaw a fast way to do something is insufficient reason to do so. The
Linux kernel, | am told, is full of binary-search table lookups. A corollary is
that tables must be kept in order—a fact with far-reaching consequences, and
an unnecessary flirtation with Dijkstsadiff. One shouldnt take on the

extra commitment until one is sure that it will nea& eal difference.

An example is the ISO protocol stack. Fear of a fully layered
implementation running slkomay spur one to handcraft a collapsed stack,
keeping the separated concerns all in mind simultaneolitsyas long ago
shown that an orderly implementation of the stack can be collapsed
automatically to meet the needs of special applications. [Optimizing

Layered Communication Protocols, in Proceedings of the Sixth IEEE

13-

International Symposium on High Performance Distributed Computing,
1997. 169 177] Work done once to malauch a tool pays dhandsomely
in avoiding the labor and bugs of doing it repeatedly by hand.

And writing such tools is more fun than writingeeyday code. The
only reason not to is featherbedding, a term that describes the practice of
requiring firemen on diesel locomats, despite the fact that dieselyé&an

boilers to stoke.

Still, what do you do when management complains you're late
because you're too careful. ldeally—and | think practicadig—the
methods should be justified up front. Bad product will come home to roost.
But more to the point, if the methodology is thoroughly adopted you will
probably win on both quality and schedule.

So it was in one trial back in my days at Bell Labs. A small team
convinced management to let them worktofthe side to build a competitor
for a product being deloped by traditional methods by a team at least five
times the size. The competition was halted after the small team had found
and fixed so manbugs in the specs that it wouldvealeen
counterproductie © let the traditional team continue in the dark.

[http://spinroot.com/gerard/pdf/hamburg94.a]

LangSec promises that kind of success. Go for it.

