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ABSTRACT
The point of Software-Defined Infrastructure is an infras-
tructure that is at once more flexible, controllable, and trans-
parent to user and developer. One important characteristic
of this infrastructure is that it is not owned or controlled by
the user. At runtime, it is an opaque black box. Thus, it
must have guaranteed properties of both performance and
function. Infrastructure also has limited visibility and de-
buggability. It’s hard to diagnose network problems, and it’s
hard to diagnose runtime issues on a remote system. Thus,
programs which manipulate the infrastructure (e.g., orches-
tration systems, SDN applications, etc.) should have their
infrastructure manipulations verified, to the extent that this
is possible. We need to catch bugs statically to the extent
that we can, performance and correctness both.

Infrastructure configurations ought to be inherently veri-
fiable. Verification of state-free systems is in NP; verifica-
tion of finite-state systems is always in P-Space, and many
problems are in NP . It has been shown by a number of
authors that OpenFlow rulesets are state-free, and verifica-
tion is therefore in NP . Similar arguments can be made
for configuration layers and workflow engines, depending
on precise semantics. These results imply that the under-
lying model of computation for configuration of software-
defined networking and at least some elements of software-
defined infrastructure are state-free or, at worst, finite-state,
and therefore that verification of these systems is relatively
tractable.

The large challenge before the community is then to de-
sign configuration models for software-defined infrastruc-
ture that preserve the precise and weak semantics of the im-
plementation domain; offer appropriate abstractions of per-
formance characteristics; and nonetheless retain usability and
concision.

1. INTRODUCTION
The opening decade of the 21st century was domi-

nated by the Cloud infrastructure, where relatively sim-
ple systems could scale automatically to support mil-
lions to tens of millions of simultaneous users. This
decade and the next will be dominated by truly dis-
tributed systems, where the network forms the primary

bottleneck on performance. This will be true for both
economic and physical reasons. On the economic side,
bandwidth price-performance is on a slower doubling
curve than compute and storage price-performance. This
means that the ratio between our ability to capture,
store, and process data and our ability to transmit it is
growing and continues to grow; over the past 15 years
this ratio has grown by a factor of 100, and it shows no
signs of slowing down[28].

As for physics, a nanosecond is, famously, a foot. But
this in fact overstates the case; in fiber, light travels only
eight inches in a nanosecond, and if a round-trip is re-
quired this is cut in half again: four inches. This means
that a microsecond is roughly the standard American
unit of measure – a football field. Highly interactive
applications require a tight user/application interaction
loop, which means that applications either require fat-
client support or the Cloud node hosting the application
must be a relatively short distance from the user. Since
users can be anywhere, this means a Cloud POP to the
user must be everywhere: hence our argument for a dis-
tributed cloud infrastructure, which is variously known
as the Distributed Cloud[5], the Fog, or Cloudlets[29].

This is the emerging model of software systems: large-
scale deployment of cloud systems connected by pro-
grammable, software-defined networks. The latter are
required since the programmer must have explicit con-
trol of the infrastructure element critical to the perfor-
mance of his application. Viewed in this light, offering
an API for the programmer to control routing in the
network is similar to giving a storage-system developer
an API to control the layout of blocks on disks. But
this model of software system deployment defeats tra-
ditional methods of debugging: the system itself will
mostly be deployed remotely from the programmer, and
its deployment will affect the infrastructure on which it
rests. This implies a new scope for verification of such
large-scale systems before deployment and auditing dur-
ing deployment. We want to be able to answer questions
such as: are my VM’s configured correctly? Can VM x
ever get into state y? Will packets sent by VM x reach
VMs u, v, w? Do packets sent by VM x for VM y arrive

1



with header bits set ot α? Etc.
The typical means of answering these and similar

questions was the usual trinity: simulation, emulation,
and in-situ monitoring and alerts. But formal veri-
fication – rigorous proofs – can be added to the ar-
senal if the deployment and configuration of the vir-
tual machines and the configuration of their underlying
software-defined network are appropriately described.
This paper describes such a description format and gives
preliminary indications that it makes verification of net-
works of VMs feasible and is consistent with the tools
used in configuration and deployment today.

The abstraction we will use throughout this paper is
that of a slice: a virtual network of virtual machines.
The term slice was first used to describe a collection of
distributed PlanetLab virtual machines[24], and later
used as the fundamental architectural unit of GENI. In
this paper, we will be investigating rigorous descriptions
of slices with strong verification properties.

The rest of this paper is organized as follows. In Sec-
tion 2, we review the Turing Hierarchy of computational
models and explore the verification properties of each of
them. In Section 3 we define a mathematical model of
switching networks. In Section 4 we examine the tools
used for the automatic configuration and deployment
of distributed virtual machines and conclude there is a
finite-state model of computation which underlies them.
In Section 5 we put these together to propose a model
for slices, and in Section 6 we draw some final thoughts.

2. THE TURING HIERACHY AND THE VER-
IFICATION HIERARCHY

The Turing hierarchy is familiar to every advanced
undergraduate computer science student: finite-state
machines, pushdown automata, linear-bounded automata,
and Turing Machines. These are distinguished by the
amount of state a program can access. They are also
mathematically equivalent to various classes of formal
language, and this correspondence is taught in every
first class in CS Theory.

For the purposes of computing systems, the only classes
of machine that arise naturally are the Turing Machine,
with unlimited state, and the Finite-State Machine, with
fixed state. Strictly speaking, every extant computing
system is a finite-state machine; however, once the num-
ber of states grows beyond a relatively small number,
for purposes of verification the machine is effectively
infinite-state.

To the classic models of computation, we add two
at the bottom end, state-free systems and logic-free
systems. A state-free system is any system where the
system’s output is dependent only on the value of its
inputs, and not on any internal dynamic state. It is
most frequently implemented as an acyclic graph of
logic gate, and every state-free system is isomorphic to a

Computational Model Verification Complexity

Turing Complete Undecidable

Finite State NP-complete to
P-space complete

State-Free NP-complete

Logic-Free Polynomial

Table 1: Computational Class and Verification
Complexity

graph (in fact, many graphs) of logic gates. A logic-free
system is any system where the output is independent
of the inputs; a good example is a graph. These are only
of interest because some properties rely only on topo-
logical properties of the system rather than any func-
tional value, and these are easily verified in polynomial
time. One must be careful, however; for many years
timing properties of logic circuits were verified using
topological properties only. However, it was shown in
[16] that accurate validation required considering func-
tional properties as well, and this moved the problem
from polynomial to NP-complete.

As one moves up the Turing Hierarchy, complexity
of verification increases. The most elementary verifica-
tion of Turing Machine properties – is a Turing Machine
guaranteed to halt? – was the first undecidable prob-
lem. At the other end of the scale, verification of logic-
free systems is polynomial, and verification of state-free
systems is in NP. Verification of finite-state systems
can range from NP-complete to P-space complete, de-
pending upon the specific property to be proved (the
“verification obligation”). Verification properties on fi-
nite state systems are typically expressed in a variant of
temporal logic, and different temporal logics have dif-
ferent properties.

By far the most common form of finite-state sys-
tem verification is the reachable states iteration, which,
given an initial state set R0(x) and a Transition Rela-
tion T (x, y) (T (x, y) = 1 iff y is a successor state of x),
finds the fixpoint of:

Rn(x) = Rn−1(x)
∨
∃y(Rn−1(y)

∧
T (y, x))

Where the fixpoint is the least n such that Rn(x) =
Rn−1(x).

Denoting the fixpoint as R?, it is straightforward to
show that the sum-of-products form of R? is less than
the size of the minimum sum-of-products form of T plus
the size of the sum-of-products form of R. Exact com-
plexity of the verification problem for finite-state sys-
tems varies with the form of temporal logic used to ex-
press the verification problem and obligation. Compu-
tation Tree Logic gives a polynomial verification prob-
lem; linear temporal logic gives at P-space complete
verification problem[3].

This gives us an interesting taxonomy of computa-
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tional models and complexity of verification obligations,
shown in Table 1. In this table we neglect degenerate
special-case classes of easy problems. For example, ver-
ification of logic functions with only two variables per
term, or verification of monotone logic functions, are
trivially polynomial; finite-state machines show a range
because the classes of finite-state problem which are
easier than P-space complete are nontrivial and cover
many common cases.

The most obvious fact that jumps out from Table 1 is
that the strength of the computational model and the
complexity of the verification calculation are correlated:
what this means is that, in practice, the ability to verify
a system and the strength of its underlying computa-
tional model are inversely related. Put simply: weak
models make for strong verification, and strong
models make for weak verification.

This consideration gives pause to the general Com-
puter Science predilection for offering the user and pro-
grammer arbitrarily strong computational models. It
is easier than not to build Turing-complete computa-
tional models, and the power that comes with them is
very attractive: “X is a great language; I can say any-
thing I want in X” should perhaps be rephrased: “X is
a problematic language; I can make any mistake at all
in X, and it will be very difficult to find”. In place of
the principle of providing an arbitrarily-strong compu-
tational model, adopting two complementary principles
values simultaneously expressiveness and verifiability:

1. The underlying computational model should not
be stronger than the computational model of the
underlying physical domain;

2. The underlying computational model should be no
stronger than that required to perform the under-
lying task.

Granted, these principles are hard to achieve in gen-
eral: they require a sophisticated knowledge of the un-
derlying implementation domain and the programmer’s
task. There is no one-size-fits-all language or domain.
But what one can do is look at broad classes of prob-
lem, analyze the characteristics of the implementation
domain and the complexity of the programmer’s task,
and devise computational models appropriate to both
the implementation domain and the task.

A good, if simple, example is in the area of syntax
defintion and parsing of computer programs. The syn-
tax of a programming language is given by a (typically,
restricted) context-free grammar. A parser for the lan-
guage is specified by describing the rules of this context-
free grammar, with an action for each grammar rule;
a parser generator such as YACC[11] or ANTLR[23]
(or many others) can not only generate a parser for
the language, it can find errors in the grammar speci-
fication such as ambiguities (existence of an expression

with two or more distinct parse trees). This verification
power comes from the fact that the grammar itself is a
logic-free system, and thus its validation properties are
polynomially-solvable.

3. A MATHEMATICAL MODEL OF NET-
WORKS

A network is a graph of switches and routers, whose
principal task is to forward packets through the net-
work according to a set of rules; each router or switch
has its own individual ruleset. A rule is typically of the
form (pat,port) → (newHeader, outputPorts), which
indicates that a packet whose header bits match pat ar-
riving on port port should be sent out on the set of ports
outputPorts with new header bits newHeader. Ports are
physical pins on the router or switch.

For reasons of economy, transparency, and rapid pro-
cessing, all of the state used in a router/switch’s for-
warding decisions is encapsulated in the rule set at any
given moment; a switch or a router is optimized to for-
ward packets as rapidly as possible, at hardware speeds
where feasible. Execution of the rule set is given by the
router/switch’s data plane; updating the ruleset is the
function of the control plane. Routers and switches are
principally distinguished by the protocols they use to
update the control plane; since this is beyond the scope
of this article henceforward we refer to both routers and
switches by the generic term “switch” with the under-
standing that this refers to both classes of device.

Historically, network verification centered on simulta-
neous verification of both the control and data planes.
This was problematic, for a variety of reasons. First, the
control plane implementation on a switch was a Turing-
complete collection of programs, so simply verifying the
control plane on an individual switch was undecidable.
Second, switches change state asynchronously, in re-
sponse to signals from other network switches and out-
of-band control instructions, which means the global
state of the network at any time is ill-defined.

The OpenFlow protocol[22, 21] decoupled the net-
work’s control and data plane. Rather than using an
integrated on-switch control plane, an OpenFlow net-
work conceptually uses a single network-wide controller,
which downloads and periodically updates the rulesets
on each switch. This opened up the possibility of veri-
fying the network’s data plane by itself.

The isomorphism of a single switch’s data plane to a
logic network had already been established in the con-
text of switch optimization[20]; in fact this was imme-
diate in the case of an OpenFlow switch from the fact
that OpenFlow’s forwarding rules are independent of
any switch state. A network of switches was immedi-
ately isomorphic to a cyclic graph of logic circuits. A
cyclic graph of logic circuits with delay on the inter-
network connections is isomophic to a finite-state ma-
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chine, where the inter-circuit connections are the state-
holding elements. This in turn indicated that verifica-
tion of the data plane was no harder than verification
of a finite-state machine. This isomorphism was im-
mediately exploited in [12], which modeled each packet
as a finite-state machine whose state was changed as
it traversed the network. This work used a variant of
symbolic simulation[7] to validate network properties,
and demonstrated strong results.

In fact, by exploiting a well-known property of switch-
ing networks, it was shown that verification of switching
networks was isomophic to the simpler problem of veri-
fying logic circuits. A well-known technique in verifying
finite-state systems is bounded model checking[4]; this
involves unrolling the finite state machine through k it-
erations into a single logic circuit; the circuit is of size
O(k|T |), where T is the size of the transition relation,
and is verified using standard techniques of verifying
logic circuits. This method is exact when the logic cir-
cuit encapsulates all possible states and transitions of
the underlying FSM; in this case, the FSM is simply a
compact representation of an underlying state-free logic
circuit, and verification of the logic circuit verifies the
FSM.

Switching networks permits a packet a finite number
of network hops; this is the so-called ”time-to-live” pa-
rameter of the network, and each packet keeps track
of its remaining hops. Using this fact, one can unroll
the switching network, where circuits at time t connect
to circuits at time t + 1. The resulting logic circuit
is acyclic, and of size nS, where S is the size of the
switching network’s logic circuits and n the maximum
time-to-live. In [18] this was used to show that verifi-
cation of the data plane of a switching network was in
NP.

A large number of network verification papers have
appeared in the last few years, all exploiting the relative
simplicity of verification of the data plane. Particularly
notable in this area is [15, 35, 1, 13]. An excellent review
and summary is given in [36].

The isomorphism of switching networks to logic cir-
cuits has had synergistic benefit to a number of well-
known difficult problems in network management. An
excellent example is network update, which can result in
transient bad network configurations. The first method
which guaranteed correctness appeared in [27], updated
in [26]. This method operated both the original and up-
dated network configuration in parallel and used mark-
ers on header bits to choose between them. An approach
which used fewer network resources but required more
latency was given in [17], and one which used verifi-
cation techniques to find a safe schedule without any
overhead was given in [19].

It should be noted that the verification process has
limits: only the data plane is verified The control plane

remains a Turing-complete artifact which can only be
validated heuristically. The use mode that has grown up
around this is verification of the data plane rule tables
before they are loaded onto switches. Since the effect
of the control plane is to configure the switch tables
correctly, this amounts to run-time validation of the
switch control plane.

The tractability of previously-insoluble problems due
to the choice of an appropriate and accurate computa-
tion model for the network control plane has given rise
to a number of description and specification formats
which are carefully tailored to state-free specification of
the network. Frenetic[9], Nettle[34] and FML[10] are all
examples of declarative, state-free specification systems
that preserved the stateless computational model of the
network data plane.

4. A MATHEMATICAL MODEL OF VM CON-
FIGURATION

The mathematics of VM Configuration are much less
well-developed than that of networks. This has only
become an issue in recent years, with the advent of
very large-scale Cloud and distributed systems. Up un-
til this point, the management of remote virtual ma-
chines has been done through a combination of shell,
Perl, and ssh scripts, ssh overlays such as Fabric, These
were largely imperative tools designed to deploy, con-
figure, and manage virtual machines, not describe their
desired behavior or reason about it.

More recent tools such as Ansible[2], Chef[31], Pup-
pet[25, 33], and Fabric[8] have addressed similar prob-
lems, but again their primary focus is on scalability and
expressiveness of management, not on verifiability or se-
mantics of the implementation domain.

A Virtual Machine is of course Turing-complete, and
so verification of its complete state is undecidable. How-
ever, we can learn from the results on network verifica-
tion summarized in the preceding section. Rather than
focusing on the full behavior of the VM, we focus solely
on its configuration, which comprises:

• Which software packages are loaded

• The state of each VM software daemon, to in-
clude at a minimum running or stopped, but with
a richer state set as declared by the developer

• The state of network ports and flows, and other
I/O devices (notably files)

The above-mentioned tools largely incorporate this
model, particularly those (Chef, Puppet, Ansible), which
incorporate a “Verifier Model” . Largely tuned to the
coarsest aspect of system state (whether a software pack-
age successfully installed or not, whether a daemon is
running or not) these systems check back and report to
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the user/developer whether a particular task has suc-
ceeded.

In the cases of Ansible, Chef, and Puppet, state is
implicit in the description and buried in the automa-
tion engine. Users can manage state explicitly through
the use of variables in the configuration description lan-
guages for each tool. All three tools use declarative
configuration languages, effectively compactly specify-
ing the transition relation of a finite-state machine. In
the case of Puppet and Chef, these are tool-specific lan-
guages; in the case of Ansible, Yet Another Markup
Language (YAML) is used.

At a higher level are the workflow engines[30] such
as Pegasus[6], XSede[32], or Kepler[14]. These are de-
signed to manage the flow of scientific workflows across
distributed grids. These share with the configuration
management tools implicit finite-state semantics, though
they are more focussed on deploying large-scale work-
flows across infrastructures. Most of these tools implic-
itly associate state with workflow elements such as large
data sets.

The preponderance of finite-state engines for the con-
figuration, deployment, management, and orchestration
of processes and virtual machines strongly suggests that
networks of finite-state machines are the most natural
model of computation for these engines, and explicit ex-
pression of and utilization of their state will yield ver-
ification methods for these distributed infrastructures
patterned on the verification methods for networks de-
scribed in the previous section.

5. A MATHEMATICAL MODEL OF SLICES
A Slice is a virtual network of virtual machines, where

the network is fully described by a set of forwarding
rules on each switch and the VMs are fully described by
their configuration, management, and execution. The
results of the previous two sections have argued that
each of these components alone has a rigorous, verifi-
able mathematical description: realized in the case of
networks, implicit and nascent in the case of virtual
machines.

The obvious conclusion to draw from this is to put
these together into a single Slice Description framework,
which would both provide a firm basis for verification
and associated tools such as safe change and update,
and from which the slice configuration, management,
deployment, orchestration and workflow tools could be
derived and from which they would operate.

6. CONCLUSIONS AND SUGGESTIONS FOR
FURTHER WORK

The conclusion was effectively given in the previous
section: we should build a mathematically rigorous con-
figuration and deployment description for slices, based
on a weak model of computation – ideally, interacting

finite-state machines interconnected by verifiable logic
circuits. This can be used as the basis of a mathemati-
cally rigorous verification system and as the basis for a
reliable, secure generation of tools.
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