
Grammatical Inference and Machine Learning
Approaches to Post-Hoc LangSec

Sheridan S. Curley
U.S. Army Reserach Laboratory

Adelphi, MD
Email: sheridan.s.curley.ctr@mail.mil

Dr. Richard E. Harang
U.S. Army Research Laboratory

Adelphi, MD
Email: richard.e.harang.civ@mail.mil

Abstract—Formal Language Theory for Security (LangSec)
applies the tools of theoretical computer science to the problem
of protocol design and analysis. In practice, most results have
focused on protocol design, showing that by restricting the
complexity of protocols it is possible to design parsers with
desirable and formally verifiable properties, such as correctness
and equivalence. When we consider existing protocols, however,
many of these were not subjected to formal analysis during their
design, and many are not implemented in a manner consistent
with their formal documentation. Determining a grammar for
such protocols is the first step in analyzing them, which places
this problem in the domain of grammatical inference, for which
a deep theoretical literature exists. In particular, although it has
been shown that the higher level categories of the Chomsky hier-
archy cannot be generically learned, it is also known that certain
subcategories of that hierarchy can be effectively learned. In this
paper, we summarize some theoretical results for inferring well-
known Chomsky grammars, with special attention to context-
free grammars (CFGs) and their generated languages (CFLs).
We then demonstrate that, despite negative learnability results
in the theoretical regime, we can use long short-term memory
(LSTM) networks, a type of recurrent neural network (RNN)
architecture, to learn a grammar for URIs that appear in Apache
HTTP access logs for a particular server with high accuracy. We
discuss these results in the context of grammatical inference,
and suggest avenues for further research into learnability of a
subgroup of the context-free grammars.

I. INTRODUCTION

The field of grammatical inference has been studied us-
ing numerous approaches since Chomsky first attempted to
mathematically model spoken languages. Chomsky organized
languages into four broad categories, based on their complex-
ity, and gave a starting point in understanding the difficulties
associated with learning any one of those categories. Each
of the more complicated languages, by construction, contains
the less complicated languages. In this paper we focus on the
two lowest tiers of this categorization, context-free and regular
languages, which by virtue of their relative simplicity contain
many of the protocols in common use today.

One of the major findings of LangSec is that it should be a
priority to secure computer systems by restricting the parsing
complexity of input languages, limiting the ability of an
attacker to inject malicious, unauthorized, and/or anomalous
code into a system. Broadly speaking, this amounts to selecting
languages as low in the Chomsky Hierarchy as possible,
as simpler languages tend to have mathematically verifiable

properties that more complex languages often lack, such as
being able to prove the equivalence between two different
parsers, or being able to verify that only a single parse exists
for all valid messages.

However, while these are sound design principles, they do
not offer a solution to the problem of existing languages that
were not designed with these principles in mind. In many
cases, there may not be a formal grammar for a particular
protocol, or the version of the protocol that exists in implemen-
tations may differ from the formal specification. In either case,
the actual grammar of the protocol must be learned before it
can be analyzed.

While the theoretical results on learning formal languages
within the context-free and regular classes tend to paint a grim
picture (see Section II), various machine learning frameworks
have nevertheless proven to be quite successful at what are
(conjectured to be) formally very hard problems, such as
natural language translation (see, e.g., [1]). This suggests that
while in the most general case grammatical inference for
LangSec may be prohibitively difficult, in particular cases it
may be possible to infer the structure for specific instances
of such grammars. With this in mind, we present learnability
results using an LSTM network to learn the structure of URIs
derived from HTTP access log files, and attempt to reconcile
the unlearnability of the class of context-free grammars with
the apparent learnability of this sub-class of URIs that should,
in general, be context-free.

In the next section we discuss the history of the learnability
results for regular and context-free Chomsky languages, and
offer some possible explanations for learnability of the classes
of language discussed later. Sections IV and III then present
the results of applying neural network learning to HTTP log
files. Section V offers interpretations of these results in the
context of Section II, as well as further avenues of interest.

II. THEORY

The theoretical framework began with Gold’s 1967 paper,
which looked at the idea of learning the types of languages in
the Chomsky hierarchy[2], [3]. Gold’s work was followed by a
series of papers from Angluin, which refined the definitions on
what types of languages could not be learned, while also giving
examples of languages that could be learned using Gold’s
“learning in the limit”[4], [5], [6]. More recently, researchers
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have produced examples of learnable languages that are part
of the classes that Gold said were not broadly learnable[7],
[8], [9]. We briefly touch upon these developments, and
present how those results can inform our understanding of
the learnability results presented in the sections below.

A. Background

Before summarizing theses various results, we first define
some useful terms. We will be using the term grammar
throughout, where a grammar is a tuple G = (N, Σ, R, q0),
where N is the set of nonterminal symbols, Σ is the alphabet
being considered, R is a set of production rules over Σ∗, and
q0 ∈ N is the starting symbol. A positive presentation of
language L is an infinite sequence of all, and only, those strings
in L, repetitions allowed. That is, given an alphabet Σ and the
set Σ∗, a positive presentation of L is {s : s ∈ Σ∗ ∩ L}. A
negative presentation is the set of strings in Σ∗ and not in L,
that is {s : s ∈ Σ∗ \L}. A complete presentation is the set of
ordered pairs 〈s, n〉 where ∀s ∈ Σ∗, n ∈ {0, 1},∃〈s, n〉 where
n = 1 iff corresponding s ∈ L.

It is also important to note that there is a difference between
learnability of a class of languages, and the learnability of a
single instance of a language. Learnability of a class is a much
stronger property, that permits no restrictions on any candidate
grammar beyond those on the class as a whole, so things such
as structural properties that may exist in certain subsets of a
class are not taken into consideration. Additionally, learning
a class would require that a learner be able to generate a
recognizer for all languages of that class. As will be shown,
this is often not possible. Learning a single language in a
class, however, may be possible in specific cases, and subsets
of classes may also be learnable if multiple languages share
relevant structure or syntax, and assumptions can be made that
group them.

Note that most grammatical inference strategies involve be-
ginning with a hypothesis space of grammars that contains the
entire class of languages under consideration, and narrowing
that hypothesis space down to the correct grammar(s) describ-
ing the desired language(s). Proofs involving such algorithms
typically revolve around the presence or absence of uniquely
identifying productions for each language (or subclass of
languages) within the class, thus allowing the elimination of
the subclass of all languages within the grammar that do not
share that telltale. This is, in a loose sense, “backwards” from
the more intuitive method of learning a language: construc-
tively building the language (and its descriptive grammar) by
constructing sequences of states and transitions as they are
observed.

B. Learning in the Limit

Gold’s paper presents a formal definition of learnability
in the limit, which can be summarized as: For a class of
recursively enumerable languages L, algorithm A identifies
L in the limit from positive presentations if ∀L ∈ L, A
produces, in a finite number of steps from a given positive
presentation, a hypothesis h that correctly describes L. More

explicitly, A identifies L in the limit iff there is a point at which
hn = hn+1 = ... and hn is a correct description of L where
∀L ∈ L and positive presentation I = i1, i2, .. of L, when
A receives in it produces hn = H(i1, i2, ..., in). A effectively
identifies L in the limit if H is effectively computable. A
correct description of L is also called a grammar that generates
L.

Gold showed that even the simplest Chomsky languages,
those generated by regular grammars, are not identifiable in the
limit from positive presentation only. This means that context-
free, and anything more complicated still, fail to be identifiable
in the limit under Gold’s assumptions. Further, Gold showed
that any super-finite class of languages – defined as a language
containing all finite and at least one infinite language – cannot
be identified in the limit. The only language considered by
Gold that was identifiable by positive presentation was finite
cardinality languages, i.e. languages that are trivially regular,
which can be learned through exhaustive enumeration. While
this strategy is theoretically feasible, it breaks down for any
language of nontrivial length, and more importantly does
not generate any information about any potential simplifying
structure inherent in the language.

C. Approximate Fingerprints

Angluin’s series of papers built upon the work of Gold, and
brought out new details. On the negative side, Angluin showed
that even if a learner was given access to an equivalence oracle
and a positive presentation, it was still not possible to gener-
ically learn Chomsky languages in the limit. An equivalence
oracle would answer queries such as “is language L equivalent
to language L′ ” or “is grammar G equivalent to grammar
G′ ”. Since it has also been shown that showing equivalence
between languages generated by two context-free grammars
is undecidable[10], the fact that even having such an oracle
does not rescue the learnability of even regular languages is not
good. Angluin also showed that the classes of nondeterministic
finite state acceptors, context free grammars, and disjunctive
normal form and conjunctive normal form formulas would not
be exactly learnable from equivalence queries due to having
the “approximate fingerprints property”[11].

Descriptively, the approximate fingerprints property can
be considered using an adversarial approach to answering
equivalence queries. When testing a hypothesis h, the learner
presents h to the adversary oracle. When answering no,
indicating h is not the target hypothesis, the adversary presents
a counterexample wh which eliminates h and some frac-
tion of the target class. If that class has the approximate
fingerprints property, the adversary can provide a wh that
eliminates a superpolynomially small fraction of the target
class. The adversary can do this a superpolynomial number
of times without running out of hypotheses in the target class,
and the learner is prevented from exactly learning the class
in polynomial time. Although it is possible to construct a
fabricated situation wherein the learner “gets lucky” despite
the adversary’s attempts, this property formally prevents any
class that exhibits it from being identified exactly.
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D. Positive Learning Results

On the positive side, although none of the Chomsky classes
were learnable in the limit in Gold’s framework, Gold did
show that any language that was primitive recursive, or less
complicated, could be learned by informant. Here, primitive
recursive is used in the computability sense, and can be
expressed as a programming language that allows arithmetic
operators, conditionals and comparisons, and bounded loops.
Due to these requirements, all primitive recursive functions
halt, as opposed to partially recursive, or Turing-complete,
programs, which suffer from the halting problem. For Gold, an
informant would provide both positive and negative examples,
so in the limit would effectively produce a complete presen-
tation. Therefore, both regular and context-free languages are
learnable, even in Gold’s assumptions, if the learner can be
given both types of examples. Of note is that Gold’s statements
were made assuming learnability in the limit, not a less-
stringent learning criteria such as learning with probability
one.

Angluin brought forth the idea of a “tell-tale” set of strings
for a language[12]. Angluin showed that a language was
identifiable from positive presentation if there was a finite set
of strings T , where ∀i ∈ N+, ∃T ⊆ Li s.t. ∀j, T ⊆ Lj ⇒
Lj 6⊆ Li. The set T is the tell-tale set, and Angluin showed
that once such a set appeared, the learner is free to guess Li

without getting stuck in a proper superset of the language;
i.e., the learner would not overgeneralize. Overgeneralization
is the prime reason that CFLs cannot be learned in the limit,
so languages that have such a tell-tale set should be learnable.
Though it is often not possible for a learner to know when it
has been given the tell-tale set.

Two other key points that came from Angluin’s papers
that were later refined are the ideas of finite thickness and
finite elasticity of a language class. Finite thickness was first
defined by Angluin as: for language class L and for each non-
empty finite set S ⊆ Σ∗, the set C(S) = {L : S ⊆ L and
L ∈ L} is of finite cardinality for class of languages L. More
plainly, this states that every string is contained in at most
finitely many languages in class L. Infinite thickness, where
a string is contained in infinitely many languages, results in
a class that cannot be narrowed down, as learning that string
never provides information on which language it came from.
Angluin showed that if a class of recursive languages has
finite thickness, then it is learnable in the limit. Motoki and
Shinohara state a language has finite elasticity if it does not
have infinite elasticity, where formally: A language class L
has infinite elasticity if there exists a sequence of strings
{w0, w1, w2, ...} and of languages {L1, L2, L3} ∈ L s.t.
∀n ≥ 1, {w0, w1, ..., wn−1} ⊆ Ln but wn 6∈ Ln [13]. They
also showed that if a class of recursively enumerable languages
has finite elasticity, then it is learnable in the limit.

Angluin also introduced the idea of the Minimally Adequate
Teacher (MAT)[5]. Such a teacher was assumed to answer two
types of questions, one being the membership query and the
other being an equivalence query. Membership is asking if

a string is or is not a member of the language to be learned.
Equivalence is asking if a hypothesized language is equivalent
to the language to be learned, with a counterexample provided
if they are not. Although regular languages were shown to be
learnable using a MAT, the equivalence question is not answer-
able for CFGs, and so only approximations, or extensions, of
MAT can be used for CFGs. Some recent examples include
work done by Clark and Eyraud[7], [14].

E. Probabilistic Learning

It is clear that in general, exact identification in the limit is
difficult because it is impossible to know when the learner has
converged to the correct language. Even if the learner can pre-
dict effectively all of the examples presented, it is still possible
a counterexample may appear. However, this means it may be
possible to still learn Chomsky languages to some effective-
enough level for practical purposes. An example of this first
appears in work by Valiant, on what is now called Probably
Approximately Correct (PAC) learning. The general idea is
summarized as, for a class G of grammars, G is PAC-learnable
if an algorithm A exists that generates with high probability,
∀G ∈ G, a hypothesis grammar H that is “close to” G. A
more rigorous definition is given originally in Valiant’s paper,
as well as many modern textbooks on grammatical inference,
such at de la Higuera’s[15], [16]. Although PAC-learnability is
in some sense less stringent than exact identification, Valiant’s
original formulation called for using all possible distributions
D over Σ∗, which is prohibitively difficult to use in practice.
Indeed, later results of Kearns and Valiant [17] show that PAC
learning of deterministic finite automata (and hence regular
grammars) is cryptographically hard, in that an algorithm
capable of PAC learning of DFAs can be used to break the
Diffie-Hellman (DH) assumption. The DH assumption here
being that the DH problem (DHP) is assumed to be hard to
solve computationally. The DHP is roughly as hard to solve
as the discrete log problem[18], which can be written: “given
element a ∈ A and h = ax, what is the value of x?”. Other
examples of variants of the DHP exist, such as [19].

F. Final Remarks

Although these results provide some ways to seemingly get
around the negative learning results, they represent specific
methods or properties that are difficult to prove for particular
CFLs. Thus, although some subset of CFLs may very well be
learnable, and such a result may be shown elsewhere, it is not
obvious a priori for any given CFL. This is a problem, since
learning from positive presentation is the style of learning most
often used in practice, given it is easy to generate examples
of “good” strings, but difficult to enumerate all possible “bad”
strings (which would be necessary to produce a complete
presentation for use in Gold’s framework). Despite this, some
language models have been shown to be learnable, such as
Angluin’s pattern languages[12], grammars modeled by ele-
mentary formal systems[20], and some subset of protocols[21].
There remains no single algorithm that can (provably) learn
an arbitrary member of the class of CFL languages, however.
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An interesting question, then, is whether there exists general
purpose algorithms that can learn particular members of the
class of CFLs, at least in a probabilistic sense, and if so, to
what degree that learnable class overlaps with protocols and
grammars that are actually deployed today. As an initial step
towards exploring this question, we used an LSTM network –
designed for very general sequence to sequence problems – to
attempt to learn the structure of URIs from HTTP access log
files. We found good learnability results (see Sections IV &
V), despite URIs being context-free in general. This strongly
suggests that the subset of the grammar of URIs, as deployed
in a single web server, does not in fact exploit the full
computational power of the class of CFLs; this in turn suggests
that despite grammatical inference in such classes being in
general a hard problem, the use of such machine-learning
models for filtration of requests or detection of potentially
malicious requests may in fact be viable.

III. EXPERIMENT BACKGROUND

Here, we examine a practical application of grammatical
inference by using machine learning to examine the set of
“good” and “bad” strings represented in requested URIs col-
lected from an Apache HTTP access log. Although we do
not directly infer a grammar in this paper, we will discuss
in Section V possibilities for extracting grammars from the
LSTM learned here. First, we outline the data we used,
give a brief discussion of the learner used, and then discuss
these machine learning results in the context of LangSec
applications.

Our first learning task on the data treated it as unlabeled
and so we are limited to a positive presentation, which means
that it will not be identifiable in the limit (per Gold’s result).
Note also that we can show that this class does not have
finite thickness (trivially, the request “GET / HTTP/1.1”, with
associated URI “/” is valid for all possible ‘languages’ of
URIs), and ignoring practical concerns about finiteness of
strings, it can be shown that the space of URIs has infinite
elasticity as well: let wn be any path element of length n, and
define Ln to be any member of the class C of valid URI sets
that has the first path segment of length less than n; then it is
obvious that the set {w0, w1, . . . wn−1} ⊆ Ln, but wn /∈ Ln.
Both results imply that the class of URIs is not learnable in the
limit. Finally, as any “language” of URIs is at least context-
free, and thus contains regular grammars, then the result of
Kearns and Valiant implies that PAC-learnability of the space
of URIs is at least cryptographically hard.

Despite these theoretical issues, we examine URIs in both
a generative (unlabeled) model, in which we train the model
to produce strings from that set, and a discriminative (read:
recognition) model, in which we train it to predict response
codes. We show below that although an LSTM is not a gram-
mar in the traditional sense, it can seemingly recognize the
language of URIs we use as data. The learner is not perfectly
accurate, however this should not be expected due to possible
ambiguities in URI structure (see Section III-A). However,
in a probabilistic sense reminiscent of PAC learnability, we

are able to separately identify valid and invalid requests to an
acceptable level of accuracy. Further, the discriminative model
is capable of results approaching the Bayes Error Rate (BER).
For the purposes of multi-label identification, the BER is the
minimum error due to overlapping in any or all of the labels.
As a basic example: consider a string s, coming from one
of 2 classes that are represented by normal distributions with
some overlap; the BER is the rate at which s could be chosen
from that region of overlap. Due to this probabilistic method
of generating the string, it is never possible to be 100% sure
of correct identification.

A. Description of the Data

Consider the format of HTTP; as outlined in RFC 3986 (on
general URI syntax) and RFC 7230 (on HTTP 1.1 message
syntax), there is nothing that restricts HTTP URIs from being
generically context-free. There are, however, some specific for-
matting considerations that may allow them to be generically
learnable, and these same traits may apply to other URIs more
generally. For instance, a generic http URI looks something
like:
http:// authority path− abempty [? query] [# fragment]
where authority, path − abempty, query, and fragment
are variable names for strings that meet their respective RFC
definitions[22]. Immediately it can be seen that any such URI
will have the structure of starting with http://, and for any URI
containing a query or fragment piece, the special characters
? and # will appear as well. The variables authority and
path − abempty have some structure, such as following
either DNS or IPv4/IPv6 labeling (authority), or to follow
certain formatting guidelines (path−abempty). The remaining
variables have no such restrictions, and none of the variables
have explicit length requirements. Example strings, especially
those with both query and fragment pieces can therefore be
considered context-free.

There are further restrictions that apply to real-world HTTP
URIs that are not necessarily required by the standards defin-
ing them. For example, it is unlikely that an authority would
be a completely random string of characters with extremely
long length. It is much more likely to be a simple DNS
identifier or an IP literal, the latter of which is explicitly
finite with determinable structure. A path is likewise unlikely
to be excessively lengthy with no further structure, as it is
most commonly going to be based on the system’s underlying
file structure, which will have been created by a person in
order to be usable in some day-to-day sense. This will likely
limit the length of paths that are seen, and will also introduce
structure such as short directory names separated by slashes.
In fact, the RFC identifies only 5 augmented Backus-Naur
form rules necessary to parse any path, given the protocol
standards[23]. Unfortunately, there is no immediately obvious
additional simplifications that can be made to the query or
fragment pieces. It is, however, observed that these are not in
practice excessively long either.

Of note from these descriptions is the fact that there are
no requirements for a URI to contain unique file structure if
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multiple such structures are accessible through a single access
server. This means that for heavy use servers, there is inherent
ambiguity when examining all incoming or outgoing URIs.
There is no reason two different systems cannot share a root
file structure and thus produce a string that can adequately, and
ambiguously, refer to two different servers as far as a learner
is concerned. The reason for this is that the distinguishing
features that allow the directing server to properly differentiate
these “ambiguous” requests are not inherently known to the
learner, and are unlikely to be learned without creating a highly
specific (and therefore restrictive) learner only for that server.
Thus our data cannot allow perfect identification using this
method of learning, but it is robust enough to be useful on
multiple servers.

B. The model

We employ a fairly standard recurrent neural network
(RNN) in which characters are consumed one at a time,
updating a hidden state which also receives updates from the
previous value of the hidden state. The hidden state then feeds
forward to either another hidden state, or an output layer. As
an update function for the hidden state, we use the long short-
term memory (LSTM) function[24] which has been shown
to effectively learn long-range dependencies in a variety of
tasks[25].

We use the Chainer[26] framework, and use built-in func-
tions unless specifically indicated otherwise. Our model struc-
ture is fairly standard, and consists of an embedding layer
which embeds one of 102 one-hot encoded characters (100
printable characters plus a start and stop character) into a 50-
dimensional space. We then have three LSTM layers each with
dimension 512. Finally we have a softmax classification layer
with either 102 outputs (for the generative model) or a smaller
number outputs (either 2 or 13, depending on the experiment,
for the discriminative model). An example illustration is given
in Figure 1. We do not employ any skip-level connections.

Training was performed using the Adam[27] optimizer.
We employ dropout[28] with a rate of 0.5 during training.
We experimented with truncated backpropagation as well as
gradient clipping and found (likely due to the relatively short
sequences being modeled) that neither was necessary, and in
fact slightly hampered training.

For the generative task, the network was asked to predict
each successive character on the basis of all previous ones
(frequently referred to as the “char-rnn” model) and so we
accumulated a cross-entropy loss at each character. For the
discriminative task, we explored two variants: first asking
the model to produce a class guess at each timestep and
accumulating loss as in the generative task, and one in which
loss was accumulated only at the final timestep. We found that
the former produced significantly better results and so restrict
our discussion to that model. We monitored the performance
of the discriminative model by classifying each new sample
before using it for training, and tracking the cumulative error
rate as well as the error rate of the most recent 10,000 samples.

Fig. 1. Diagram sketching the network’s structure.

IV. EXPERIMENTAL RESULTS

Here we present the most relevant results from the learning
tasks discussed above. As a brief summary: we find that the
LSTM is capable of identifying novel, ungrouped URIs with
a success rate of roughly 95.4%, versus a Bayes Error Rate of
99.7%, and novel, grouped URIs at a rate of 99.4%, against a
BER of 99.9%. This represents promising learnability results
on an inherently probabilistic grammar.

A. Data

We use a collection of Apache HTTP access logs collected
over the course of a single week in June 2013, covering a
single server offering a small collection of J2EE services.
This data included both normal user behavior as well as
several instances of brute-force webscanner activity, and some
rare instances of more sophisticated (though still apparently
automated) service profiling. Logs were rotated every 12
hours, and so we selected all but the final 12 hours as a
training sample, with those final 12 used as a testing sample.
From this testing sample we considered two scenarios: first we
examined the entire access log as-is. Because URIs frequently
repeat, often exactly, we also examined the subset of URIs
from the test data that had not appeared in the training data.
This tested the ability of the classifier to generalize. A total of
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830,238 entries are available from the testing sample, of which
100,546 were novel, while there are 6,398,612 total entries in
the training sample.

B. Results

For the generative model, we look at the negative binary
log-likelihood (NBLL) which has a simple interpretation as the
average number of bits required to encode the string. A naive
encoding of 102 characters results in 6.6724 bits per character,
assuming each character is seen uniformly at random indepen-
dent of all others. Taking the distribution of characters into
account (but still assuming independence) results in 3.7611
bits per character. Our model over a test set obtains an average
NBLL of 0.564 bits per character, indicating a high degree
of structural dependency that can be successfully learned. It
should be noted that this is accomplished in the presence
of a significant number of URI requests that contain such
features as session ID keys, which are essentially random
(on a reduced alphabet) and so have an intrinsically higher
NBLL (NBLL values for these segments tended to be higher,
often 3 to 4 BPC, consistent with base 64 encoding with some
predictability).

To validate the production capability of the genera-
tive model, we generated samples using both character-by-
character sampling, as well as by beam searches from prefixes
in the data set. Character-by-character sampling produced
generally representative samples, although most were ”mem-
orized” strings, and many became incoherent at the end of
the generated string (this is a known problem when the
random sampling process selects a low-probability character
by chance, see [29] for further discussion). Beam sampling
generally avoided this issue, and by setting the beam width
sufficiently high and returning all results in the final beam we
could force the model to generate high probability samples
that it had never seen. Several interesting features were ob-
served, such as the ability to generate novel base64 encoded
strings with correct padding that could be decoded (albeit
to gibberish); the model correctly using the substitution of
“%2F” for “/” and “%3A” for “:” characters in novel contexts
in URL redirections; and the model “mixing and matching”
key-value pairs across different web application endpoints in
a reasonably plausible manner.

For the discriminative model, we compare the classification
performance of the model to the Bayes Accuracy, in which
each instance is assigned its most probable label based on
probabilities derived from the ground truth labels. As the same
URI may, depending on the remainder of the request and
the state of the server, return a status code 200 (“OK”), a
status code 302 (“Found”), or a status code 500 (“Internal
server error”), a classifier which has access to only the URI
has no basis on which to distinguish them, and hence should
return the label of the most probable class. To attempt to
normalize this somewhat, we grouped the URIs into three
categories: “Handled,” including response codes 200 (Found),
206 (Partial content), 302 (Temporary redirect), and so on;
“Bad request,” including response codes in the 400 range

TABLE I
BAYES AND OBSERVED ACCURACY RATES FOR EACH COMBINATION OF

TEST URI SET AND GROUPING

All URIs New URIs
Ungrouped Bayes accuracy 0.9421 0.9973
Ungrouped empirical accuracy 0.8858 0.9536
Grouped Bayes accuracy 0.9990 0.9998
Grouped empirical accuracy 0.9936 0.9950
Total records 830237 100546

TABLE II
CONFUSION MATRIX FOR GROUPED CLASSIFICATION ON NOVEL URIS W/
LEARNER LABELS ALONG TOP ROW & ACTUAL LABELS IN LEFT COLUMN

Bad Request Handled Request Server Error
Bad Request 40 471 0
Handled Request 3 99994 0
Server Error 0 37 0

(Bad request, Unauthorized, Forbidden, Not found, etc) and
501 (Not implemented); and “Server error,” including the 500
series of responses with the exception of 501.

The BER for each of the four test scenarios we consider
(ungrouped and grouped responses with full and unique data),
our observed error rates, as well as the number of records, are
given in table I.

Note that – in particular – the classifier performs quite
well on novel URIs that it has not been exposed to before,
outperforming the classifier presented with several repeated
URIs. The relatively worse performance of the latter can be
attributed to several classes of URIs for which the complete
test data had a different distribution of response codes than
the training data; the (in this case) nonstationary nature of the
problem led to a higher classification error rate. Examination
of the classifier’s learned labels for the training data verified
that it had learned to correctly assign the most probable class
within the training data. More detailed examination of the
confusion matrix in table II shows that the “false positive
rate” that would be obtained by using the classifier as some
version of a web application firewall is relatively low, with
only 3 normal requests being misclassified as being in the “bad
request” category. However it should also be noted that the
confusion matrix cannot identify errors caused by ambiguous
labels. In 221 of the 471 “false negatives”, the same novel
URI appeared with both “Normal Request” response codes
and “Bad Request” response codes. This indicates a non-
separable set of URIs within which errors are inevitable. Most
of these cases appeared to relate to additional authorization
information (e.g. cookies) that were not captured in the URI.
The LSTM model correctly assigned the most probable label
to such ambiguous URIs, minimizing the error rate.

V. DISCUSSION

In this section we discuss these results in the context of
prior work and LangSec theory, and what the results mean
for future avenues of research. Given prior theoretic results
demonstrating the entire class of context-free grammars cannot
be learned by a single, powerful learner, (see Section II) our
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work adds to the group of specific, useful subsets of CFLs
that do seem to be learnable in practice.

A. Language Learning Context

The result that at least some URIs are learnable using an
RNN is not as immediately surprising as the grammatical
inference theory would suggest. Results from Clark[30], [31]
have shown that non-terminally separated (NTS) languages,
themselves a subset of CFLs, can be PAC-learned when
considering less-broad distribution requirements than Valiant
originally used. Generally speaking, PAC-learning is more
restrictive than what is considered in this work. While it
is generally difficult to derive PAC bounds for sequence-to-
sequence models of the kind we explored, and it is difficult to
determine (for RNNs) what the underlying learned grammar
actually is, the fact that we obtained relatively high accuracy
for prediction tasks, and such a high compression ratio on
the generative tasks, suggests that the model nevertheless
uncovered a significant degree of structure.

Since classification of URIs has overlap in the possible
labels for a given URI, the Bayes error rate represents the best-
case scenario for identification, assuming a learned language
that can classify the URI. That is, the set of URIs considered
here cannot be considered to be purely deterministic in terms
of what language is generating the URI strings. Thus, we
would not expect to achieve absolutely correct identification
in this learning environment. The final results demonstrate a
close agreement between the Bayes and the experimental error
rates for both discriminative and generative modeling, which
suggests that the learner is nearly as good as it is possible to
be, with the grouped results being particularly promising.

From a LangSec point of view, the learner is successfully
identifying server response to a given URI, which should
allow for useful security differentiation of those URIs. These
results also suggest that the picture for the existing protocol
infrastructure of the internet is perhaps not as bleak as a first
examination through the lens of LangSec and grammatical
inference would suggest. Current language-theoretic results
suggest avoiding (where possible) grammars for protocols that
are in any of the classes more complicated than regular in the
Chomsky hierarchy, arguing that a wide range of complexity
results suggests protocols with such high complexity are not
just inherently unsecure, but in many cases inherently unse-
curable, due to factors such as lack of provable equivalence.

In many cases however, as discussed above, these proofs
of hardness either imply or require the nonexistence of only
exceptionally powerful learners: learners that must cope with
every possible grammar in a class, including infinite and/or
pathological ones. Optimistically, in practical applications,
such hard-to-learn grammars within the class of interest may in
fact be uncommon. Our modeling of URIs provides a concrete
example of a particular grammar (the grammar describing
URI endpoints on a specific server) within a broad class of
grammars (all possible valid URI schemes) that does in fact
appear to be learnable by what now count as fairly standard
and well understood sequence learning algorithms.

B. Future as LangSec

Three clear problems are suggested by these results. First,
can we describe a non-Chomsky class of grammars that is
flexible enough to cover normal use cases in protocol design
without admitting the pathological cases that make inference
and recognition problems unsolvable in more general classes?
Second, can we describe tests that will allow us to determine
efficiently if a given protocol is a member of that class of
grammars? (This may also provide guidance for protocol
designers who require some of the expressive power of more
complex classes of grammars, but wish to retain some of the
security benefits of simpler classes.) Third, can the use of
“black box” learning methods, such as those presented here,
assist in manual deconstruction of existing grammars that may
lack formal specifications?

A first point of interest is that some protocols may be
(at least nearly) in a learnable subset of CFLs, such as
NTS languages. Such languages may have good learnability
properties, as discussed above. Though it is not clear if a
large majority of protocols would fit into such classes, or if
such protocols’ being only nearly in them is sufficient for
good learnability. The question of determining a protocol’s
membership in such useful subclasses of CFGs remains open.

There are also results showing that finite state machines
can be extracted from RNNs using varying methods of rule ex-
traction, for an overview see Jacobsson’s review[32]. Although
these methods may not be robust enough to produce a minimal
and completely unambiguous state machine describing the
class of URIs, it may be possible to extract enough of such a
machine to be used for security purposes. If, for example, a
machine could be extracted from a trained LSTM that was
capable of identifying 80% of malicious requests (a result
substantially below what was found here for the LSTM itself),
the machine could be used to filter out bad traffic before it
even arrives at a server. This provides a possible avenue to
improving the security of such servers in a LangSec way that
is implementable on systems that exist today that otherwise
use “unsecurable” parsers or implementations.

Another possibility would be to construct a deterministic
(or even probabilistic) finite automata (DFA) from the LSTM
based on the per-character entropy spikes the LSTM reports.
Again, the goal would be to produce a quickly navigable
DFA that could be used to filter requests before they get
to an otherwise vulnerable server. Although theoretic results
suggest that it may be difficult or impossible to learn a CFG in
the “proper” sense, learning a parsing method from a trained
LSTM provides similar benefits.

The results considered here are proof that systems that can
be called inherently unsecure may be able to be made at least
more secure by adapting more probabilistic methods from
machine learning. Although training an RNN for all possible
vulnerable servers is not an easy or long term solution, it
may provide a stop-gap for those with larger servers and
more access to the computation power to train an RNN.
Additionally, our results show that a very basic RNN, with

7



no prior assumptions about the server and the requests seen,
can be trained to have excellent discriminative rates.

With all of this in mind, pure mathematical proofs have
left the viability of learning (potentially vulnerable) languages
in shambles. At best, it may be possible to construct, from
base assumptions, languages restricted to low levels of the
Chomsky hierarchy. These languages may then be secure in a
LangSec sense. However, it is unlikely that such an approach
will be quickly adopted (if adopted at all) by the wide array
of groups that continue to use unsecurable systems. Here, we
have shown that if the requirement of perfect mathematical
learnability is relaxed to a probabilistic one, it is possible
to get results that provide a method of securing already
existing systems with already well understood algorithms. This
presents a possible “pit-stop” on the road to fully LangSec-
secure implementations, where already existing servers and
systems can be given at least some level of protection that
LangSec has proposed, without requiring immediate adoption
of new parsers.

VI. CONCLUSION

In this paper we summarized some important theoretical
results in the field of grammatical inference, suggesting that
the problem of grammatical inference that is posed by apply-
ing language-theoretic security principles to existing network
infrastructure is extremely hard. However, these theoretical
results focus on very general learning algorithms that must
account for all languages within a class of grammars. This
typically requires that the learning algorithm be capable of
handling infinite and pathological languages within the class
as well; in real world learning scenarios, such grammars
may be possible to exclude from consideration a priori, thus
significantly simplifying the problem of inference for that
class.

We presented empirical results that support this conjecture
by demonstrating good learnability of URIs inside of HTTP
access logs by means of an RNN. We found that despite
theoretical results showing that context-free grammars are not
learnable as an entire class by a single learner, the URI subset
is in fact learnable for some problems to nearly the Bayes
error rate. For most practical applications, and in particular
those applications relevant to LangSec, this likely constitutes
sufficient learnability. In particular, the generative run of the
RNN produced novel string examples that were still classi-
fiable under the known class of URIs, while the predictive
model provides a strong level of discriminative power. We also
offered some commentary on possible theoretical justification
for these positive results, with suggestions for follow-up work.
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