A posteriori taint-tracking for demonstrating
non-interference in expressive low-level languages

Peter Aldous Matthew Might
University of Utah University of Utah
peteya@cs.utah.edu might@cs.utah.edu

February 3, 2016

Abstract

‘We previously presented a theory of analysis for expressive low-level lan-
guages that is capable of proving non-interference for expressive languages.
We now present an implementation of that analysis, empirical evaluation
of that implementation and optimizations to improve performance. In
the course of developing an optimization, we provide a independence re-
sult for the taint-flow analysis that drives tracking of information. In
particular, we show that the taint-tracking can be derived from the re-
sults of a taint-free analysis. In addition to improving performance, this
independence broadens the applicability of the underlying approach to
information-flow analysis. Finally, we present metrics for our analysis on a
suite of applications which demonstrate improvements in its performance.

1 Introduction

In our SAS 2015 paper [1], we presented a theory of analysis suitable for proving
non-interference (or the absence of information flows) in expressive low-level
languages, such as Dalvik bytecode [11]. Dalvik bytecode, like many modern low-
level languages, contain objects, virtual methods, exceptional flow, conditional
jumps, and mutation. A proof of non-interference could be used to demonstrate
that user data, such as passwords or GPS location, are not transmitted to third
parties. It could also be used to verify that a cryptographic primitive does not
leak its key or to verify that sandboxed applications cannot communicate with
each other.

This analysis is distinct from analyses that focus on identification of bugs; it
is successful not when it helps analysts to identify and fix problems but when
it helps analysts to prove the absence of problems. In order to help analysts
to make guarantees about programs, this automated analysis eliminates false
negatives (and, consequently, permits false positives).

Our theory of analysis, as presented, had no implementation or performance
metrics. We left the question of tractability open. In order to address this



question, we present an implementation (named Data) of our analysis. We
discuss the details of its implementation and test it on Android applications. We
then discuss optimizations to the analysis that make it tractable on an increasing
number of these applications.

1.1 Contributions

e We present an implementation of an information-flow analysis for Android
applications.

e We discuss optimizations made to the analysis and present performance
metrics from executions of the analysis on several Android applications.

e We demonstrate that the analysis generates false positives but that it is
sufficiently accurate to help analysts to find information flows and prove
their absence.

1.2 Structure

Section 2 describes the techniques upon which our analysis is built as they
exist in the literature. Section 3 elaborates on the implementation of Data,
including its optimizations to the analysis as presented. Section 4 measures the
performance of the different variants of the analysis. Section 5 elaborates on the
significance of the results. Section 6 discusses related work.

2 Background

Our theory of analysis uses a small-step abstract interpreter with components
added to prove non-interference. Subsection 2.1 describes small-step abstract
interpretation and subsection 2.2 explains non-interference.

2.1 Small-step abstract interpretation

The CESK [9] evaluation model represents states in an interpreter’s execution
as tuples of control (C), environment (E), store (S), and continuations (K). The
control represents where the interpreter is in the program, the environment maps
variables to addresses, the store maps addresses to values, and a continuation
contains the information used to return from a function. In an imperative
program, these terms roughly approximate (respectively) the program counter,
the frame pointer, the heap, and the stack.

Van Horn and Might [25] demonstrated that CESK interpreters can be turned
into small step abstract interpreters by abstracting their state spaces so
that they can be guaranteed to be finite and modifying their transition rules
to permit for multiple successors to each state. An abstract CESK interpreter
produces not a linear program trace but a graph of abstract states that model
all possible executions from a given initial abstract state.



A finite state space is not sufficient to guarantee termination. It is also
necessary to avoid calculating successors for the same state repeatedly. Since the
successors to a state are a function of the members of the state (and, in some cases,
immutable values such as the program being interpreted), the successors of a
state will always be the same and it is never necessary to repeat a calculation. As
such, small-step abstract interpreters can be guaranteed to terminate. Instead of
interpreting until there are no more successors, interpretation proceeds, ignoring
already-explored states, until no new states can be found. The analysis terminates
with a finite graph of all reachable abstract states.

A sound small-step abstract interpretation represents all possible program
executions in its finite state space. Typically, soundness is proven by proving
simulation. Simulation proofs show that abstract interpretation simulates con-
crete interpretation by showing that the relationship between a concrete state ¢
and its abstraction ¢ holds for their respective successors. With a concretization
function v, we can formalize the relationship between ¢ and ¢: ¢ is in v (<). If
¢’ is the concrete successor to ¢ and ¢’ is some abstract successor to ¢, then ¢’
must be in v (¢"). Given some initial concrete state ¢y and an initial abstract
state ¢y whose concretization includes ¢y and a proof of this inductive property,
we can conclude that the abstract state graph includes all possible behaviors
that the concrete trace could exhibit.

More formally, our inductive property states that if

¢ — ¢ and ¢ € (<)

then there exists an abstract state ¢’ such that

¢~ ¢ and ¢ e v (<)

2.2 Non-interference

Traditional taint tracking mechanisms apply a security type or label, also
called a taint, to sensitive values, such as a phone’s location or a user’s password.
Whenever a new value is written, it derives its security type from the values
upon which it depends. Although many security types are binary, where values
with a high security label are sensitive and must be protected and values low
security label are not sensitive, Denning demonstrated that security types may
be rich lattices [5].

These techniques are effective for explicit information flows but fail to detect
implicit information flows, which depend on control flow to leak information.
Consider the Java code snippet in Listing 1, which demonstrates an implicit
flow; despite the fact that y is written with constants, it will always get the
same value as z. Traditional taint tracking mechanisms track only explicit flows
and fail to catch implicit flows.

In order to track implicit information flows, taints can also be applied to the
program’s context, per Denning and Denning [6]. Denning and Denning claimed



Listing 1: An implicit information flow
if (x = true) {

y = true;
} else {
y = false;

}

that a static analysis of postdominance in the control flow graph would allow
context tainting to apply to languages with arbitrary goto statements but did
not prove non-interference. Furthermore, their analysis does not include function
calls or exceptional control flow. We demonstrated that such an analysis is
possible [1], although it was necessary to modify the analysis to properly handle
these rich language features.

In order to demonstrate the absence of information flows, even in the presence
of exceptional control flow and other rich language features, we proved non-
interference, which is the property that sensitive information cannot affect (or
interfere with) behaviors that are visible to an attacker. Since some programs
do not satisfy the requirement of non-interference, the proof of non-interference
is a proof that any interference will be identified by the small-step abstract
interpreter.

Our analysis uses the suggestion of Denning and Denning to calculate post-
dominance, but they use a richer graph (called the execution point graph)
than the control flow graph. Nodes in an execution point graph are pairs of
a code point and a natural number, which is the depth of the stack. As we
demonstrated, a subtle class of information leak does exist (in languages with
functions) that could elude an analysis that uses a control flow graph to detect
implicit flows.

We performed abstract interpretation with taint flow analysis and propagate
taints from context. After abstract interpretation we calculated the execution
point graph by projecting the state graph. Then, we used the execution point
graph to demonstrate that some statements occur at points in the program
unaffected by certain branch statements. In these cases, the taints in question
can be removed or ignored without allowing interference.

3 Implementation

Our analysis extends the state space of an abstract CESK machine to include
a taint store, which acts in parallel with the store but stores taints instead of
values, and a context taint set, which tracks the points in the program where
branches occurred that depended on tainted values. These modifications allowed
us to prove non-interference but added considerable complexity to abstract
interpretation.

The addition of the taint store makes no difference in the asymptotic com-
plexity of abstract interpretation (assuming the size of the set of taint values is



constant), as the taint store is essentially a small extension to the store. There
can be no more taint values than abstract values.

The context taint set, on the other hand, can add considerable complexity.
Unlike the taint store, the context taint set is a fully fledged additional component
to each state, which expands the size of the state space and can greatly expand
the size of the state graph for a particular program. Worse still, widening the
store has no effect the context taint set and there is no obvious way to widen
the context taint set separately.

Subsection 3.1 details the salient features of the implementation. Subsec-
tion 3.2 addresses the expansion of the state graph size due to context taint
by removing taint components from the state space and performing taint flow
analysis after abstract interpretation.

3.1 Implementation details
3.1.1 Modularity

A canonical abstract interpreter in the style of Abstracting Abstract Machines [25]
has one allocation function. Since Data operates on Dalvik bytecode, it needs
abstract allocators for frame pointers, continuation addresses, array addresses,
and object addresses. Additionally, Dalvik bytecode has four primitive types:
int, long, float, and double and each primitive type requires abstraction. In the
spirit of the work of Jenkins, et al. [13], using concrete allocators and concrete
primitive types makes Data a concrete interpreter.

Allocators for different components of the interpreter are all defined as
abstract classes so that they can be exchanged. Continuation addresses can be
allocated with a 0CFA allocator or a 1CFA allocator. Other allocators can easily
be added to the source code.

Primitive type abstractors are also abstract classes. Implementations exist
for each primitive type that represent concrete values, sets of concrete values,
and the set of all values. Additional abstractions can easily be written, although
it is common for multiple abstraction types to co-exist and it may be necessary
to augment the existing abstractors so they can perform arithmetic operations
with the additional abstractors.

Naturally, any combination of these allocators and abstractors can be chosen
with command-line parameters.

3.1.2 Register de-allocation

Although Dalvik bytecode uses virtual registers, the Android SDK allocates
registers sparingly. Register allocation algorithms use called liveness analysis to
determine which registers must co-exist and which registers can be combined.
Liveness analysis goes backwards through the program. When a variable
is read, it is “live”; in other words, it has been read. When it is written, it is
“dead”; portions of the program above its assignment cannot see the result of
this assignment. Any two variables that are live at the same time are said to



Listing 2: A sample program for register allocation

x = 3; JARS:
y = X; /] {x}
z = 4; /] Ay}
X = 5; // {YV Z}

System.out.println(y); // {y, 2z}
System.out.println(z); // {z}

interfere (this is not to be confused with non-interference as used by information
flow). Variables that interfere with each other cannot share the same register.

We illustrate liveness analysis with a simple program snippet in Listing 2.
The last statement reads z, so our live set is {z}. The previous statement adds y
to our live set: {y, z}. Writing to « does nothing, as z is not in the live set. The
statement prior writes to z, so z is removed from the set and y is left alone: {y}.
The previous statement “kills” y by writing it and “generates” x by reading it,
so the live set is {z}. Finally, the first statement kills 2 and the live set is left
empty.

Since z and z are never in the live set together, they can be combined into a
single register during allocation. If they are combined, y must be allocated to a
different register because the live set includes both y and z at the second-to-last
line of code.

Uses and definitions of variables can be combined into use-def chains. In
the example in Listing 2, z would be put into two separate chains. The first
includes its definition on the first line and the other includes its definition before
the println statements. Separating distinct uses of variables enables further
optimizations; the different use-def chains for  can be allocated independently.

Our analyzer performs liveness analysis, but in reverse: it creates use-def
chains of registers and uses these chains to create addresses for stack values in
the abstract store. By separating registers into use-def chains, we prevent values
from merging in the abstract store that would otherwise be conflated.

3.1.3 Ancillary components

In order to discover entry points, it is necessary to make sense of Android’s
binary XML formats. Each Android application has a manifest file called
AndroidManifest.xml that contains a list of its entry points. It also contains a
resource table in a file called resources.arsc, which in turn identifies different
layout files. Layout files contain descriptions of the various Ul components,
which in turn define additional entry points; the press of a button or the entry of
text into a field may be necessary in order to complete some information flows.
Each of these files comes in Android’s binary format, which is created and read
by copying C structs to and from memory.

In order to ensure that all program behaviors are analyzed in the absence of
a main function, Data uses entry-point saturation, which was first presented



by Liang, et al. [17]

3.2 Optimization
3.2.1 A posteriori taint tracking

The context taint set in our original analysis grows monotonically. We removed
context taints in postprocessing, after calculating the entire state graph.

In our new analysis, we move all of the information flow calculations to
postprocessing. Since any additional steps taken during abstract interpretation
do not affect state graph exploration, separating abstract interpretation and
information flow analysis allows known modifications to small-step abstract
interpretation, such as store widening, to be used to their full effect.

In order to preserve generality, the abstract interpreter must keep track
of the relationships between addresses read and written at each state. This
bookkeeping is done outside of the state space and allows the abstract interpreter
to use arbitrary allocators, as described by Might and Manolios [19], without
making it impossible for the taint tracking mechanism to correctly identify where
information flows based on the state graph alone.

Since the entire state graph (and, therefore, the entire execution point graph)
is available to the information flow analysis, it is not necessary to propagate
context taints from their origins to the end of the program and remove or ignore
taints later. Instead, the taint tracking mechanism can avail itself of the fully-
formed execution point graph to calculate which assignments require taint from
context.

The state graph, together with the annotations about addresses read and
written at each state, contain enough information to reconstruct all of the
program’s behaviors. As such, it is possible to construct the same information
flows as in the original model. Propagation of taints uses a fixed point algorithm,
much like graph exploration. At each state, taints at addresses read propagate
to the addresses they influence. Similarly, taints are added to addresses from
context taint whenever writes occur. Taint propagation operates in the same style
as in our original analysis except that no spurious context taints are propagated.

The propagation algorithm must also track the context taints seen at code
points that invoke functions in order to faithfully recreate context taint when
removing frames from the stack (as happens upon returning from a function or
throwing an exception).

Much like state exploration, where a state may have multiple successors,
taint propagation can proceed to multiple successor states.

Like small-step abstract interpretation, our taint tracking algorithm proceeds
to a fixed point; when the propagation reaches a state it has seen previously,
when its taint store is subsumed by the taints previously seen at that state, when
the taints in the context have all been seen at the state’s execution point, and
when the context taints in the stack are subsumed by context taints previously
seen on the stack, further propagation will generate no new information.



3.2.2 Non-interference in a posteriori taint tracking

The proof of non-interference is essentially the same for a posteriori taint tracking
method as in our original theory of analysis. It hinges on the same notion of
similarity and proceeds along the state graph as before.

Traces in this proof are series of concrete states, as in the original formulation.
Each trace follows some path through the (already explored) state graph. As in
the original proof, taint propagation may traverse fewer states than are members
of its corresponding concrete trace because the fixed point algorithm may prove
that no additional information can be found. As before, this does not invalidate
soundness or non-interference.

4 Experimental results

4.1 Methodology

The Automated Program Analysis for Cybersecurity (APAC) program performed
several experiments in which analysts were presented with Android applications
and were tasked with identifying malware that had been implanted in the
applications. We tested both the implementation of the analysis from Aldous and
Might and the implementation of a posteriori taint tracking on each application
from one of these experiments. Leaks that depend on the inner workings of
library methods were considered out of scope.

In order to measure accuracy, we paired the occurrences of sources and of
sinks in the apps. Since these pairings number in the millions, it was impossible
to verify each one by hand. Instead, we counted the pairings in Filterize, the
application with the smallest number of sources and sinks used (16 sources and
19 sinks for a total of 304 pairings, with four of those flows relying on library
methods and therefore being out of bounds). Of the twelve applications chosen,
six timed out for all analyses.

4.2 Results

Figure 1 shows the time each analysis took, the number of states discovered by
each analysis, and the number of lines of code covered by abstract interpretation.
Applications timed out after 24 hours. Blank cells indicate that the analysis
timed out on the application in question. Figure 2 details the accuracy of the
analysis on Filterize.

The data show that the separation of abstract interpretation from taint
tracking improves the tractability of the analysis, allowing it to successfully
analyze six applications instead of four, and to analyze the programs whose
analyses were tractable more quickly.

As its theoretical basis suggests, there are no false negatives in the analysis.
Wherever a source can reach any sink, the analysis reports that it can reach all
of the sinks that can be reached. Overtainting is unsurprising, since the abstract



App name Runtime States found LOCs covered

in state | a posteriori | in state ‘ a posteriori | in state ‘ a posteriori
BattleStat 233 s 139 s 221 190 188 188
chatterbocs 3034 s 399 s 1067 499 447 447
Filterize - 80238 s - 6844 - 1375
Filterize (1CFA) - 27917 s - 3944 - 1255
ICD9 2086 s 918 s 593 539 412 415
rLurker 1917 s 636 s 706 609 572 572
Valet - 43822 s - 2382 - 1254

Table 1: Performance statistics for analyses on APAC apps

True False
Analysis || positives | negatives | positives | negatives
0CFA 4 190 106 0
1CFA 4 224 72 0

Table 2: Accuracy of analysis of Filterize

interpretation performed was 0CFA; OCFA merges control flow upon returning
from a function.
Even 0CFA, with its lack of precision, succeeds in demonstrating that there

are no information flows in 190 (62.5%) of the 304 source/sink pairs in Filterize.

This alleviates more than half of the workload for a human analyst charged with
proving the absence of information flows.

Since merging seemed to be a significant factor in the precision of the analysis
on Filterize, we ran 1CFA on Filterize. 1CFA was more precise, so it covered
many fewer lines of code and discovered many fewer states. As a result, it was
significantly faster in a posteriori taint tracking (it timed out in in-state taint
tracking with both allocators). Its tracking of information flows was also more
precise; 1CFA demonstrated that there were no information flows in 224 (73.7%)
of the source/sink pairs in Filterize.

5 Discussion

5.1 Assisted assurance

Unlike many analyses, Data is not designed to identify bugs or vulnerabilities.

Instead, it is designed to help experts to prove their absence. As such, its utility
is not usefully measured by comparisons against tools that identify bugs. It is
useful, rather, when it decreases the amount of work that must be done to verify
the absence of information flows.




5.2 Analysis-agnostic non-interference

The proof of non-interference requires a sound state graph and, since allocators
may be non-deterministic, information about the addresses written and read at
each state (or, for a less precise analysis, at each code point in the program or
even at any point in the program). As mentioned previously, this separation
allows store widening to be effective. However, the separation of these two
analyses is powerful enough to permit much more than widening, as the proof
of non-interference is agnostic to the style of analysis performed. As a result, a
more precise analysis such as PDCFA [7] could be performed on a program and
the non-interference proof would still apply. The same is true of optimizations,
such as abstract garbage collection [21].

Our proof of non-interference, like that in our original theory of analysis, relies
on induction on the structure of Dalvik bytecode. It relies particularly on the fact
that Dalvik’s instructions allow only four stack operations: no change, a single
push, a single pop, and an arbitrary number of pops (for thrown exceptions).
However, it may be possible to generalize the proof to any language as long
as the language uses only combinations of pushes and pops in its semantics.
Even analyses of languages with call/cc could prove non-interference with this
technique.

Additionally, if the bookkeeping during analysis were expanded to include
stack behaviors, including each execution point visited when searching for an
exception handler, it might be possible to perform taint tracking on any sound
state graph for any analysis on any language and get a proof of non-interference
without additional theoretical work.

5.3 Generalized state graph postprocessing

We originally created an analysis by extending the state space of a CESK machine
with data that do not affect the execution of the program. Subsequently, we
improved its performance drastically by removing the additional information
from the state space and calculating it from a finished state graph.

When designing future analyses based on small-step abstract interpreters, it
is likely that it will be similarly practical to perform the analysis after abstract
interpretation rather than extending the state space. For example, it is likely
that this same technique could be applied to abstract counting [20].

6 Related work

Our analysis is an implementation of the analysis presented by Aldous and
Might [1]. It builds upon prior work in small-step abstract interpretation,
such as the seminal work by Van Horn and Might [25] and uses entry-point
saturation [17]. Sabelfeld and Myers [24] present a succinct summary of the
concepts in information flow tracking.

Denning [5] and, later, Denning and Denning [6] pioneered work in taint
tracking.
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Subsequent papers applied and expanded on their work, such as the work
by Volpano, Irvine, and Smith [27] that established that the analysis presented
by Denning and Denning is sound. Volpano and Smith [28] extend the work of
Denning and Denning so it handles some termination leaks and some exceptional
flow. Both of these papers use languages without conditional jumps, making
it impossible to apply them to Dalvik bytecode or similar languages without
significant adaptation.

Many analyses are suitable for finding information flows but not for proving
their absence. Kim et al. [16] analyze Dalvik bytecode but do not address implicit
flows. Chang, Streiff, and Lin present a tool that transforms C programs by
enforcing policies but also address only explicit flows. Arzt et al. [2] present
FlowDroid, an analyzer for Android applications. Their paper states that they
do not address implicits, although a blog post claims that they have since added
support for them.

Xu, Bhaktar, and Sekar [29] transform C programs in a way that tracks
information flows. They track some implicits but not all of them. Accordingly,
they do not claim or prove non-interference. Kang, et al. [15] perform an analysis
on Windows x86 binaries but specifically allow for false negatives. Liang and
Might [18] analyze Python programs and detect explicit information flows.

Venkatakrishnan, et al. [26] prove non-interference with a dynamic analysis
that can terminate a program before it leaks information. Their analysis targets
a language similar to Jif; it is a simple imperative language that uses security
annotations and that lacks exceptional control flow. TaintDroid [8] is a dynamic
extension to Android that tracks explicit flows. Significantly, TaintDroid tracks
information in memory and in storage. It does not prevent information leaks
but may detect them. Jia, et al. [14] present a dynamic analysis that allows
programmers to provide annotations that are enforced dynamically. Myers [23]
created JFlow, which extends Java and allows programmers to provide annota-
tions which it enforces. JFlow is a hybrid of static and dynamic analyses and
relies on branches with syntactic bounds. It permits several species of covert
flows.

There are analyses that guarantee non-interference. In every case, the analysis
targets a language without features common to expressive low-level languages
and, as such, cannot guarantee non-interference on programs written in these
languages. Giacobazzi and Mastroeni [10] prove non-interference in IMP, which
lacks exceptional control flow, including the ability to break from a loop. Askarov,
et al. [3] and Moore, Askarov, and Chong [22] prove non-interference in Jif, a
Java-like language with security annotations that lacks exceptional control flow.
Barthe and Rezk [4] prove non-interference in a language modeled after the JVM
that lacks function calls. As such, exceptions are reduced to jumps and their
analysis cannot be applied to languages with functions and exceptional flow.

The specification for Dalvik bytecode [11] and for the dex file format [12]
provide details of the languages and their semantics.
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7 Conclusion

Our original theory of analysis is theoretically sound. Our implementation shows
that, with some optimizations, it is effective at diminishing the work that an
analyst must do to prove the absence of information flows in moderately sized
Android applications.

Our analysis also demonstrates two possible theoretical results: it may be
possible to completely separate the proof of non-interference from the language
being analyzed and from the analysis performed, allowing any analysis to add
trivial bookkeeping and a postprocessing step in order to produce a proof of
non-interference. It may also be possible to perform other refinements, such
as abstract counting, to small-step abstract interpretation a posteriori, thus
yielding the same optimizations while shrinking the state space.

Additionally, we have shown that any sound state graph, combined with
information about addresses written and read during the course of execution,
can be used to prove non-interference without the need for additional theoretical
work. Other analyses may also be performed a posteriori.
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